Names | |
---|---|
Preferred IUPAC name -4,4′-diol | |
Other names
4,4′-Dihydroxybiphenyl 4,4′-Diphenol 4,4′-Biphenyldiol | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.002.001 |
EC Number |
|
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C12H10O2 |
Molar mass | 186.210 g·mol |
Appearance | colorless or white solid |
Melting point | 283 °C (541 °F; 556 K) |
Boiling point | Sublimes |
Solubility in water | Insoluble in water Soluble in ethanol and ether |
Hazards | |
Flash point | > 93.3 °C (199.9 °F; 366.4 K) |
Safety data sheet (SDS) | MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
4,4′-Biphenol is an aromatic organic compound, and one of three symmetrical isomers of biphenol. It is a colourless crystalline solid with a high melting point. It is primarily used in the production of polymers, particularly liquid crystals where it imparts high thermal stability.
Synthesis
The industrial synthesis of 4,4′-biphenol was developed by Allan Hay in the 1960s. As the direct oxidative coupling of phenol gives a mixture of isomers, 4,4′-biphenol is instead prepared from 2,6-di-tert-butylphenol, where para-coupling is the only possibility. The reaction with oxygen produces phenol-radicals which undergo rapid dimerisation, forming a diphenoquinone. This is reduced to the tetra-butyl-biphenyl derivative by a reaction with additional 2,6-di-tert-butylphenol, in an oxygen-free environment. In the final step, high temperature dealkylation is performed to remove the butyl groups, producing the desired 4,4′-biphenol product. If groups less bulky that t-butyl are used then polyphenylene ethers such as poly(p-phenylene oxide) can be produced.
Safety
4,4'-Biphenol had actually been elucidated to have an estrogenic SAR.
See also
References
- Chen, Guoliang; Du, Fangyu; Zhou, Qifan; Liu, Dongdong; Fang, Ting; Shi, Yajie; Du, Yang (2018-01-31). "Dimerization of Aromatic Compounds Using Palladium-Carbon-Catalyzed Suzuki–Miyaura Cross-Coupling by One-Pot Synthesis (Supporting Information)". Synlett. 29 (6): 779–784. doi:10.1055/s-0036-1591892. ISSN 0936-5214. S2CID 104289422.
- ^ Hay, A.S. (January 1965). "Dehydrogenation reactions with diphenoquinones". Tetrahedron Letters. 6 (47): 4241–4243. doi:10.1016/S0040-4039(01)89114-0.
- ^ Hay, Allan S. (April 1969). "p,p'-Biphenols". The Journal of Organic Chemistry. 34 (4): 1160–1161. doi:10.1021/jo01256a098.
- Helmut Fiege; Heinz-Werner Voges; Toshikazu Hamamoto; et al. (2002). "Phenol Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_313. ISBN 3527306730.
- O’Brien, M. K.; Vanasse, B. (2004). "Vanadium(IV) Chloride". In Paquette, L. (ed.). Encyclopedia of Reagents for Organic Synthesis. New York, NY: J. Wiley & Sons. doi:10.1002/047084289X.rv001. ISBN 0471936235.
- Hay, Allan S. (April 1962). "Polymerization by oxidative coupling. II. Oxidation of 2,6‐disubstituted phenols". Journal of Polymer Science. 58 (166): 581–591. doi:10.1002/pol.1962.1205816634.
- Dodds, E. C.; Lawson, W. (1937). "A Simple Aromatic oestrogenic Agent with an Activity of the Same Order as that of estrone". Nature. 139 (3519): 627–628. doi:10.1038/139627b0. ISSN 0028-0836. S2CID 4119670.