Misplaced Pages

AP5

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from APV (drug)) This article is about the chemical compound. For the Star Wars Rebels TV series character, see AP-5.
AP5
Names
Preferred IUPAC name (2R)-2-Amino-5-phosphonopentanoic acid
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.150.904 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C5H12NO5P/c6-4(5(7)8)2-1-3-12(9,10)11/h4H,1-3,6H2,(H,7,8)(H2,9,10,11)/t4-/m1/s1Key: VOROEQBFPPIACJ-SCSAIBSYSA-N
  • InChI=1/C5H12NO5P/c6-4(5(7)8)2-1-3-12(9,10)11/h4H,1-3,6H2,(H,7,8)(H2,9,10,11)/t4-/m1/s1Key: VOROEQBFPPIACJ-SCSAIBSYBE
SMILES
  • O=P(O)(O)CCC(N)C(=O)O
Properties
Chemical formula C5H12NO5P
Molar mass 197.13 g/mol
Appearance white solid
Density 1.529 g/mL
Boiling point 482.1 °C (899.8 °F; 755.2 K)
Solubility in water Ammonium hydroxide, 50 mg/mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

AP5 (also known as APV, (2R)-amino-5-phosphonovaleric acid, or (2R)-amino-5-phosphonopentanoate) is a chemical compound used as a biochemical tool to study various cellular processes. It is a selective NMDA receptor antagonist that competitively inhibits the ligand (glutamate) binding site of NMDA receptors. AP5 blocks NMDA receptors in micromolar concentrations (~50 μM).

AP5 blocks the cellular analog of classical conditioning in the sea slug Aplysia californica, and has similar effects on Aplysia long-term potentiation (LTP), since NMDA receptors are required for both. It is sometimes used in conjunction with the calcium chelator BAPTA to determine whether NMDARs are required for a particular cellular process. AP5/APV has also been used to study NMDAR-dependent LTP in the mammalian hippocampus.

In general, AP5 is very fast-acting within in vitro preparations, and can block NMDA receptor action at a reasonably small concentration. The active isomer of AP5 is considered to be the D configuration, although many preparations are available as a racemic mixture of D- and L-isomers. It is useful to isolate the action of other glutamate receptors in the brain, i.e., AMPA and kainate receptors.

AP5 can block the conversion of a silent synapse to an active one, since this conversion is NMDA receptor-dependent.

See also

References

  1. Morris RG. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience. 1989 Sep;9(9):3040-57. PMID 2552039
  2. Cellular Analog of Differential Classical Conditioning in Aplysia: Disruption by the NMDA Receptor Antagonist DL-2-Amino-5-Phosphonovalerate
  3. Gustafsson B., Wigström H., Abraham W.C., and Huang Y.Y. Long-Term Potentiation in the Hippocampus Using Depolarizing Current Pulses as the Conditioning Stimulus to Single Volley Synaptic Potentials. Journal of Neuroscience. 1987 March;7(3):774-780

External links

Ionotropic glutamate receptor modulators
AMPARTooltip α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
KARTooltip Kainate receptor
NMDARTooltip N-Methyl-D-aspartate receptor
Categories:
AP5 Add topic