In a 2000 paper titled "Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States" Acín et al. described a way of separating out one of the terms of a general tripartite quantum state. This can be useful in considering measures of entanglement of quantum states.
General decomposition
For a general three-qubit state
|
ψ
⟩
=
a
000
|
0
A
⟩
|
0
B
⟩
|
0
C
⟩
+
a
001
|
0
A
⟩
|
0
B
⟩
|
1
C
⟩
+
a
010
|
0
A
⟩
|
1
B
⟩
|
0
C
⟩
+
a
011
|
0
A
⟩
|
1
B
⟩
|
1
C
⟩
+
a
100
|
1
A
⟩
|
0
B
⟩
|
0
C
⟩
+
a
101
|
1
A
⟩
|
0
B
⟩
|
1
C
⟩
+
a
110
|
1
A
⟩
|
1
B
⟩
|
0
C
⟩
+
a
111
|
1
A
⟩
|
1
B
⟩
|
1
C
⟩
{\displaystyle |\psi \rangle =a_{000}\left|0_{A}\right\rangle \left|0_{B}\right\rangle \left|0_{C}\right\rangle +a_{001}\left|0_{A}\right\rangle \left|0_{B}\right\rangle \left|1_{C}\right\rangle +a_{010}\left|0_{A}\right\rangle \left|1_{B}\right\rangle \left|0_{C}\right\rangle +a_{011}\left|0_{A}\right\rangle \left|1_{B}\right\rangle \left|1_{C}\right\rangle +a_{100}\left|1_{A}\right\rangle \left|0_{B}\right\rangle \left|0_{C}\right\rangle +a_{101}\left|1_{A}\right\rangle \left|0_{B}\right\rangle \left|1_{C}\right\rangle +a_{110}\left|1_{A}\right\rangle \left|1_{B}\right\rangle \left|0_{C}\right\rangle +a_{111}\left|1_{A}\right\rangle \left|1_{B}\right\rangle \left|1_{C}\right\rangle }
there is no way of writing
|
ψ
A
,
B
,
C
⟩
≠
λ
0
|
0
A
′
⟩
|
0
B
′
⟩
|
0
C
′
⟩
+
λ
1
|
1
A
′
⟩
|
1
B
′
⟩
|
1
C
′
⟩
{\displaystyle \left|\psi _{A,B,C}\right\rangle \neq {\sqrt {\lambda _{0}}}\left|0_{A}^{\prime }\right\rangle \left|0_{B}^{\prime }\right\rangle \left|0_{C}^{\prime }\right\rangle +{\sqrt {\lambda _{1}}}\left|1_{A}^{\prime }\right\rangle \left|1_{B}^{\prime }\right\rangle \left|1_{C}^{\prime }\right\rangle }
but there is a general transformation to
|
ψ
⟩
=
λ
1
|
0
A
⟩
|
0
B
⟩
|
0
C
⟩
+
|
1
A
⟩
(
λ
2
e
i
ϕ
|
0
B
⟩
|
0
C
⟩
+
λ
3
|
0
B
⟩
|
1
C
⟩
+
λ
4
|
1
B
⟩
|
0
C
⟩
+
λ
5
|
1
B
⟩
|
1
C
⟩
)
{\displaystyle |\psi \rangle =\lambda _{1}|0_{A}^{}\rangle |0_{B}^{}\rangle |0_{C}^{}\rangle +|1_{A}^{}\rangle (\lambda _{2}e^{i\phi }|0_{B}^{}\rangle |0_{C}^{}\rangle +\lambda _{3}|0_{B}^{}\rangle |1_{C}^{}\rangle +\lambda _{4}|1_{B}^{}\rangle |0_{C}^{}\rangle +\lambda _{5}|1_{B}^{}\rangle |1_{C}^{}\rangle )}
where
λ
i
≥
0
,
∑
i
=
1
5
λ
i
2
=
1
{\displaystyle \lambda _{i}\geq 0,\sum _{i=1}^{5}\lambda _{i}^{2}=1}
.
References
Acín, A.; Andrianov, A.; Costa, L.; Jané, E.; Latorre, J. I.; Tarrach, R. (2000-08-14). "Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States" . Physical Review Letters . 85 (7): 1560–1563. doi :10.1103/PhysRevLett.85.1560 . hdl :2445/12805 . ISSN 0031-9007 .
Category :
Acín decomposition
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑