Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Aluminium gallium antimonide, also known as gallium aluminium antimonide or AlGaSb (AlxGa1-xSb), is a ternary III-V semiconductor compound. It can be considered as an alloy between aluminium antimonide and gallium antimonide. The alloy can contain any ratio between aluminium and gallium. AlGaSb refers generally to any composition of the alloy.
The bandgap and lattice constant of AlGaSb alloys are between those of pure AlSb (a = 0.614 nm, Eg = 1.62 eV) and GaSb (a = 0.610 nm, Eg = 0.73 eV). At an intermediate composition, the bandgap transitions from an indirect gap, like that of pure AlSb, to a direct gap, like that of pure GaSb. Different values of the composition at which this transition occurs have been reported over time, both from computational and experimental studies, with reported values ranging from x = 0.23 to x = 0.43. The spread in the reported values of the transition is mainly due to the closeness of the gap sizes at the Γ and L points in the Brillouin zone and variations in the experimentally-determined gap sizes.
Applications
AlGaSb has been incorporated into devices such as heterojunction bipolar and high-electron-mobility transistors, resonant-tunneling diodes, solar cells, short-wave infrared lasers, and a novel infrared light modulator. It is sometimes selected as an interlayer or buffer layer in studies of GaSb and InAs quantum wells.
Al-rich AlGaSb is sometimes selected over AlSb in heterostructures for being more chemically stable and resistant to oxidation than pure AlSb.
^ Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. (2001). "Band parameters for III–V compound semiconductors and their alloys". Journal of Applied Physics. 89 (11): 5815–5875. Bibcode:2001JAP....89.5815V. doi:10.1063/1.1368156.
Wang, F., Jia, Y., Li, S.-F., Sun, Q. (2009). "First-principles calculation of the 6.1 Å family bowing parameters and band offsets". Journal of Applied Physics. 105 (4): 043101–043101–4. Bibcode:2009JAP...105d3101W. doi:10.1063/1.3072688.
Mathieu, H., Auvergne, D., Merle, P., Rustagi, K. C. (1975). "Electronic energy levels in Ga1−xAlxSb alloys". Physical Review B. 12 (12): 5846–5852. doi:10.1103/PhysRevB.12.5846.
^ Bennett, B. R., Boos, J. B., Ancona, M. G., Papanicolaou, N. A., Cooke, G. A., Kheyrandish, H. (2007). "InAlSb/InAs/AlGaSb Quantum Well Heterostructures for High-Electron-Mobility Transistors". Journal of Electronic Materials. 36 (2): 99–104. Bibcode:2007JEMat..36...99B. doi:10.1007/s11664-006-0057-5. S2CID887524.
Furukawa, A., Mizuta, M. (1988). "Heterojunction bipolar transistor utilising AlGaSb/GaSb alloy system". Electronics Letters. 24 (22): 1378–1380. Bibcode:1988ElL....24.1378F. doi:10.1049/el:19880943.
Magno, R., Bracker, A. S., Bennett, B. R. (2001). "Resonant interband tunnel diodes with AlGaSb barriers". Journal of Applied Physics. 89 (10): 5791–5793. Bibcode:2001JAP....89.5791M. doi:10.1063/1.1365940.
Wang, C. A., Jensen, K. F., Jones, A. C., Choi, H. K. (1996). "n -AlGaSb and GaSb/AlGaSb double-heterostructure lasers grown by organometallic vapor phase epitaxy". Applied Physics Letters. 68 (3): 400–402. Bibcode:1996ApPhL..68..400W. doi:10.1063/1.116698.
Xie, H., Wang, W. I. (1993). "Normal incidence infrared modulator using direct–indirect transitions in GaSb quantum wells". Applied Physics Letters. 63 (6): 776–778. Bibcode:1993ApPhL..63..776X. doi:10.1063/1.109904.