Misplaced Pages

ARGUS distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Argus distribution)
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "ARGUS distribution" – news · newspapers · books · scholar · JSTOR (March 2011)
ARGUS
Probability density function
c = 1.
Cumulative distribution function
c = 1.
Parameters c > 0 {\displaystyle c>0} cut-off (real)
χ > 0 {\displaystyle \chi >0} curvature (real)
Support x ( 0 , c ) {\displaystyle x\in (0,c)\!}
PDF see text
CDF see text
Mean μ = c π / 8 χ e χ 2 4 I 1 ( χ 2 4 ) Ψ ( χ ) {\displaystyle \mu =c{\sqrt {\pi /8}}\;{\frac {\chi e^{-{\frac {\chi ^{2}}{4}}}I_{1}({\tfrac {\chi ^{2}}{4}})}{\Psi (\chi )}}}

where I1 is the Modified Bessel function of the first kind of order 1, and Ψ ( x ) {\displaystyle \Psi (x)} is given in the text.
Mode c 2 χ ( χ 2 2 ) + χ 4 + 4 {\displaystyle {\frac {c}{{\sqrt {2}}\chi }}{\sqrt {(\chi ^{2}-2)+{\sqrt {\chi ^{4}+4}}}}}
Variance c 2 ( 1 3 χ 2 + χ ϕ ( χ ) Ψ ( χ ) ) μ 2 {\displaystyle c^{2}\!\left(1-{\frac {3}{\chi ^{2}}}+{\frac {\chi \phi (\chi )}{\Psi (\chi )}}\right)-\mu ^{2}}

In physics, the ARGUS distribution, named after the particle physics experiment ARGUS, is the probability distribution of the reconstructed invariant mass of a decayed particle candidate in continuum background.

Definition

The probability density function (pdf) of the ARGUS distribution is:

f ( x ; χ , c ) = χ 3 2 π Ψ ( χ ) x c 2 1 x 2 c 2 exp { 1 2 χ 2 ( 1 x 2 c 2 ) } , {\displaystyle f(x;\chi ,c)={\frac {\chi ^{3}}{{\sqrt {2\pi }}\,\Psi (\chi )}}\cdot {\frac {x}{c^{2}}}{\sqrt {1-{\frac {x^{2}}{c^{2}}}}}\exp {\bigg \{}-{\frac {1}{2}}\chi ^{2}{\Big (}1-{\frac {x^{2}}{c^{2}}}{\Big )}{\bigg \}},}

for 0 x < c {\displaystyle 0\leq x<c} . Here χ {\displaystyle \chi } and c {\displaystyle c} are parameters of the distribution and

Ψ ( χ ) = Φ ( χ ) χ ϕ ( χ ) 1 2 , {\displaystyle \Psi (\chi )=\Phi (\chi )-\chi \phi (\chi )-{\tfrac {1}{2}},}

where Φ ( x ) {\displaystyle \Phi (x)} and ϕ ( x ) {\displaystyle \phi (x)} are the cumulative distribution and probability density functions of the standard normal distribution, respectively.

Cumulative distribution function

The cumulative distribution function (cdf) of the ARGUS distribution is

F ( x ) = 1 Ψ ( χ 1 x 2 / c 2 ) Ψ ( χ ) {\displaystyle F(x)=1-{\frac {\Psi \left(\chi {\sqrt {1-x^{2}/c^{2}}}\right)}{\Psi (\chi )}}} .

Parameter estimation

Parameter c is assumed to be known (the kinematic limit of the invariant mass distribution), whereas χ can be estimated from the sample X1, …, Xn using the maximum likelihood approach. The estimator is a function of sample second moment, and is given as a solution to the non-linear equation

1 3 χ 2 + χ ϕ ( χ ) Ψ ( χ ) = 1 n i = 1 n x i 2 c 2 {\displaystyle 1-{\frac {3}{\chi ^{2}}}+{\frac {\chi \phi (\chi )}{\Psi (\chi )}}={\frac {1}{n}}\sum _{i=1}^{n}{\frac {x_{i}^{2}}{c^{2}}}} .

The solution exists and is unique, provided that the right-hand side is greater than 0.4; the resulting estimator χ ^ {\displaystyle \scriptstyle {\hat {\chi }}} is consistent and asymptotically normal.

Generalized ARGUS distribution

Sometimes a more general form is used to describe a more peaking-like distribution:

f ( x ) = 2 p χ 2 ( p + 1 ) Γ ( p + 1 ) Γ ( p + 1 , 1 2 χ 2 ) x c 2 ( 1 x 2 c 2 ) p exp { 1 2 χ 2 ( 1 x 2 c 2 ) } , 0 x c , c > 0 , χ > 0 , p > 1 {\displaystyle f(x)={\frac {2^{-p}\chi ^{2(p+1)}}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}}\cdot {\frac {x}{c^{2}}}\left(1-{\frac {x^{2}}{c^{2}}}\right)^{p}\exp \left\{-{\frac {1}{2}}\chi ^{2}\left(1-{\frac {x^{2}}{c^{2}}}\right)\right\},\qquad 0\leq x\leq c,\qquad c>0,\,\chi >0,\,p>-1}
F ( x ) = Γ ( p + 1 , 1 2 χ 2 ( 1 x 2 c 2 ) ) Γ ( p + 1 , 1 2 χ 2 ) Γ ( p + 1 ) Γ ( p + 1 , 1 2 χ 2 ) , 0 x c , c > 0 , χ > 0 , p > 1 {\displaystyle F(x)={\frac {\Gamma \left(p+1,\,{\tfrac {1}{2}}\chi ^{2}\left(1-{\frac {x^{2}}{c^{2}}}\right)\right)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}},\qquad 0\leq x\leq c,\qquad c>0,\,\chi >0,\,p>-1}

where Γ(·) is the gamma function, and Γ(·,·) is the upper incomplete gamma function.

Here parameters c, χ, p represent the cutoff, curvature, and power respectively.

The mode is:

c 2 χ ( χ 2 2 p 1 ) + χ 2 ( χ 2 4 p + 2 ) + ( 1 + 2 p ) 2 {\displaystyle {\frac {c}{{\sqrt {2}}\chi }}{\sqrt {(\chi ^{2}-2p-1)+{\sqrt {\chi ^{2}(\chi ^{2}-4p+2)+(1+2p)^{2}}}}}}

The mean is:

μ = c p π Γ ( p ) Γ ( 5 2 + p ) χ 2 p + 2 2 p + 2 M ( p + 1 , 5 2 + p , χ 2 2 ) Γ ( p + 1 ) Γ ( p + 1 , 1 2 χ 2 ) {\displaystyle \mu =c\,p\,{\sqrt {\pi }}{\frac {\Gamma (p)}{\Gamma ({\tfrac {5}{2}}+p)}}{\frac {\chi ^{2p+2}}{2^{p+2}}}{\frac {M\left(p+1,{\tfrac {5}{2}}+p,-{\tfrac {\chi ^{2}}{2}}\right)}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}}}

where M(·,·,·) is the Kummer's confluent hypergeometric function.

The variance is:

σ 2 = c 2 ( χ 2 ) p + 1 χ p + 3 e χ 2 2 + ( χ 2 2 ( p + 1 ) ) { Γ ( p + 2 ) Γ ( p + 2 , 1 2 χ 2 ) } χ 2 ( p + 1 ) ( Γ ( p + 1 ) Γ ( p + 1 , 1 2 χ 2 ) ) μ 2 {\displaystyle \sigma ^{2}=c^{2}{\frac {\left({\frac {\chi }{2}}\right)^{p+1}\chi ^{p+3}e^{-{\tfrac {\chi ^{2}}{2}}}+\left(\chi ^{2}-2(p+1)\right)\left\{\Gamma (p+2)-\Gamma (p+2,\,{\tfrac {1}{2}}\chi ^{2})\right\}}{\chi ^{2}(p+1)\left(\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})\right)}}-\mu ^{2}}

p = 0.5 gives a regular ARGUS, listed above.

References

  1. Albrecht, H. (1990). "Search for hadronic b→u decays". Physics Letters B. 241 (2): 278–282. Bibcode:1990PhLB..241..278A. doi:10.1016/0370-2693(90)91293-K. (More formally by the ARGUS Collaboration, H. Albrecht et al.) In this paper, the function has been defined with parameter c representing the beam energy and parameter p set to 0.5. The normalization and the parameter χ have been obtained from data.
  2. Confluent hypergeometric function

Further reading

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: