(Redirected from Argus distribution )
ARGUS
Probability density functionc = 1.
Cumulative distribution functionc = 1. Parameters
c
>
0
{\displaystyle c>0}
cut-off (real )
χ
>
0
{\displaystyle \chi >0}
curvature (real ) Support
x
∈
(
0
,
c
)
{\displaystyle x\in (0,c)\!}
PDF
see text CDF
see text Mean
μ
=
c
π
/
8
χ
e
−
χ
2
4
I
1
(
χ
2
4
)
Ψ
(
χ
)
{\displaystyle \mu =c{\sqrt {\pi /8}}\;{\frac {\chi e^{-{\frac {\chi ^{2}}{4}}}I_{1}({\tfrac {\chi ^{2}}{4}})}{\Psi (\chi )}}}
where I 1 is the Modified Bessel function of the first kind of order 1, and
Ψ
(
x
)
{\displaystyle \Psi (x)}
is given in the text. Mode
c
2
χ
(
χ
2
−
2
)
+
χ
4
+
4
{\displaystyle {\frac {c}{{\sqrt {2}}\chi }}{\sqrt {(\chi ^{2}-2)+{\sqrt {\chi ^{4}+4}}}}}
Variance
c
2
(
1
−
3
χ
2
+
χ
ϕ
(
χ
)
Ψ
(
χ
)
)
−
μ
2
{\displaystyle c^{2}\!\left(1-{\frac {3}{\chi ^{2}}}+{\frac {\chi \phi (\chi )}{\Psi (\chi )}}\right)-\mu ^{2}}
In physics , the ARGUS distribution , named after the particle physics experiment ARGUS , is the probability distribution of the reconstructed invariant mass of a decayed particle candidate in continuum background.
Definition
The probability density function (pdf) of the ARGUS distribution is:
f
(
x
;
χ
,
c
)
=
χ
3
2
π
Ψ
(
χ
)
⋅
x
c
2
1
−
x
2
c
2
exp
{
−
1
2
χ
2
(
1
−
x
2
c
2
)
}
,
{\displaystyle f(x;\chi ,c)={\frac {\chi ^{3}}{{\sqrt {2\pi }}\,\Psi (\chi )}}\cdot {\frac {x}{c^{2}}}{\sqrt {1-{\frac {x^{2}}{c^{2}}}}}\exp {\bigg \{}-{\frac {1}{2}}\chi ^{2}{\Big (}1-{\frac {x^{2}}{c^{2}}}{\Big )}{\bigg \}},}
for
0
≤
x
<
c
{\displaystyle 0\leq x<c}
. Here
χ
{\displaystyle \chi }
and
c
{\displaystyle c}
are parameters of the distribution and
Ψ
(
χ
)
=
Φ
(
χ
)
−
χ
ϕ
(
χ
)
−
1
2
,
{\displaystyle \Psi (\chi )=\Phi (\chi )-\chi \phi (\chi )-{\tfrac {1}{2}},}
where
Φ
(
x
)
{\displaystyle \Phi (x)}
and
ϕ
(
x
)
{\displaystyle \phi (x)}
are the cumulative distribution and probability density functions of the standard normal distribution, respectively.
Cumulative distribution function
The cumulative distribution function (cdf) of the ARGUS distribution is
F
(
x
)
=
1
−
Ψ
(
χ
1
−
x
2
/
c
2
)
Ψ
(
χ
)
{\displaystyle F(x)=1-{\frac {\Psi \left(\chi {\sqrt {1-x^{2}/c^{2}}}\right)}{\Psi (\chi )}}}
.
Parameter estimation
Parameter c is assumed to be known (the kinematic limit of the invariant mass distribution), whereas χ can be estimated from the sample X 1 , …, X n using the maximum likelihood approach. The estimator is a function of sample second moment, and is given as a solution to the non-linear equation
1
−
3
χ
2
+
χ
ϕ
(
χ
)
Ψ
(
χ
)
=
1
n
∑
i
=
1
n
x
i
2
c
2
{\displaystyle 1-{\frac {3}{\chi ^{2}}}+{\frac {\chi \phi (\chi )}{\Psi (\chi )}}={\frac {1}{n}}\sum _{i=1}^{n}{\frac {x_{i}^{2}}{c^{2}}}}
.
The solution exists and is unique, provided that the right-hand side is greater than 0.4; the resulting estimator
χ
^
{\displaystyle \scriptstyle {\hat {\chi }}}
is consistent and asymptotically normal .
Generalized ARGUS distribution
Sometimes a more general form is used to describe a more peaking-like distribution:
f
(
x
)
=
2
−
p
χ
2
(
p
+
1
)
Γ
(
p
+
1
)
−
Γ
(
p
+
1
,
1
2
χ
2
)
⋅
x
c
2
(
1
−
x
2
c
2
)
p
exp
{
−
1
2
χ
2
(
1
−
x
2
c
2
)
}
,
0
≤
x
≤
c
,
c
>
0
,
χ
>
0
,
p
>
−
1
{\displaystyle f(x)={\frac {2^{-p}\chi ^{2(p+1)}}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}}\cdot {\frac {x}{c^{2}}}\left(1-{\frac {x^{2}}{c^{2}}}\right)^{p}\exp \left\{-{\frac {1}{2}}\chi ^{2}\left(1-{\frac {x^{2}}{c^{2}}}\right)\right\},\qquad 0\leq x\leq c,\qquad c>0,\,\chi >0,\,p>-1}
F
(
x
)
=
Γ
(
p
+
1
,
1
2
χ
2
(
1
−
x
2
c
2
)
)
−
Γ
(
p
+
1
,
1
2
χ
2
)
Γ
(
p
+
1
)
−
Γ
(
p
+
1
,
1
2
χ
2
)
,
0
≤
x
≤
c
,
c
>
0
,
χ
>
0
,
p
>
−
1
{\displaystyle F(x)={\frac {\Gamma \left(p+1,\,{\tfrac {1}{2}}\chi ^{2}\left(1-{\frac {x^{2}}{c^{2}}}\right)\right)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}},\qquad 0\leq x\leq c,\qquad c>0,\,\chi >0,\,p>-1}
where Γ(·) is the gamma function , and Γ(·,·) is the upper incomplete gamma function .
Here parameters c , χ, p represent the cutoff, curvature, and power respectively.
The mode is:
c
2
χ
(
χ
2
−
2
p
−
1
)
+
χ
2
(
χ
2
−
4
p
+
2
)
+
(
1
+
2
p
)
2
{\displaystyle {\frac {c}{{\sqrt {2}}\chi }}{\sqrt {(\chi ^{2}-2p-1)+{\sqrt {\chi ^{2}(\chi ^{2}-4p+2)+(1+2p)^{2}}}}}}
The mean is:
μ
=
c
p
π
Γ
(
p
)
Γ
(
5
2
+
p
)
χ
2
p
+
2
2
p
+
2
M
(
p
+
1
,
5
2
+
p
,
−
χ
2
2
)
Γ
(
p
+
1
)
−
Γ
(
p
+
1
,
1
2
χ
2
)
{\displaystyle \mu =c\,p\,{\sqrt {\pi }}{\frac {\Gamma (p)}{\Gamma ({\tfrac {5}{2}}+p)}}{\frac {\chi ^{2p+2}}{2^{p+2}}}{\frac {M\left(p+1,{\tfrac {5}{2}}+p,-{\tfrac {\chi ^{2}}{2}}\right)}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}}}
where M(·,·,·) is the Kummer's confluent hypergeometric function .
The variance is:
σ
2
=
c
2
(
χ
2
)
p
+
1
χ
p
+
3
e
−
χ
2
2
+
(
χ
2
−
2
(
p
+
1
)
)
{
Γ
(
p
+
2
)
−
Γ
(
p
+
2
,
1
2
χ
2
)
}
χ
2
(
p
+
1
)
(
Γ
(
p
+
1
)
−
Γ
(
p
+
1
,
1
2
χ
2
)
)
−
μ
2
{\displaystyle \sigma ^{2}=c^{2}{\frac {\left({\frac {\chi }{2}}\right)^{p+1}\chi ^{p+3}e^{-{\tfrac {\chi ^{2}}{2}}}+\left(\chi ^{2}-2(p+1)\right)\left\{\Gamma (p+2)-\Gamma (p+2,\,{\tfrac {1}{2}}\chi ^{2})\right\}}{\chi ^{2}(p+1)\left(\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})\right)}}-\mu ^{2}}
p = 0.5 gives a regular ARGUS, listed above.
References
Albrecht, H. (1990). "Search for hadronic b→u decays". Physics Letters B . 241 (2): 278–282. Bibcode :1990PhLB..241..278A . doi :10.1016/0370-2693(90)91293-K . (More formally by the ARGUS Collaboration, H. Albrecht et al.) In this paper, the function has been defined with parameter c representing the beam energy and parameter p set to 0.5. The normalization and the parameter χ have been obtained from data.
Confluent hypergeometric function
Further reading
Albrecht, H. (1994). "Measurement of the polarization in the decay B → J/ψK*". Physics Letters B . 340 (3): 217–220. Bibcode :1994PhLB..340..217A . doi :10.1016/0370-2693(94)01302-0 .
Pedlar, T.; Cronin-Hennessy, D.; Hietala, J.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tomaradze, A.; Xiao, T.; Martin, L. (2011). "Observation of the hc (1P) Using ee Collisions above the DD Threshold". Physical Review Letters . 107 (4): 041803. arXiv :1104.2025 . Bibcode :2011PhRvL.107d1803P . doi :10.1103/PhysRevLett.107.041803 . PMID 21866994 . S2CID 33751212 .
Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Y. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; et al. (2010). "Search for Charged Lepton Flavor Violation in Narrow Υ Decays". Physical Review Letters . 104 (15): 151802. arXiv :1001.1883 . Bibcode :2010PhRvL.104o1802L . doi :10.1103/PhysRevLett.104.151802 . PMID 20481982 . S2CID 14992286 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑