Misplaced Pages

Aubin–Lions lemma

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.

The result is named after the French mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin, the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon, so the result is also referred to as the Aubin–Lions–Simon lemma.

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For 1 p , q {\displaystyle 1\leq p,q\leq \infty } , let

W = { u L p ( [ 0 , T ] ; X 0 ) u ˙ L q ( [ 0 , T ] ; X 1 ) } . {\displaystyle W=\{u\in L^{p}(;X_{0})\mid {\dot {u}}\in L^{q}(;X_{1})\}.}

(i) If p < {\displaystyle p<\infty } then the embedding of W into L p ( [ 0 , T ] ; X ) {\displaystyle L^{p}(;X)} is compact.

(ii) If p = {\displaystyle p=\infty } and q > 1 {\displaystyle q>1} then the embedding of W into C ( [ 0 , T ] ; X ) {\displaystyle C(;X)} is compact.

See also

Notes

  1. Aubin (1963)
  2. Simon (1986)
  3. Boyer & Fabrie (2013)

References

  • Aubin, Jean-Pierre (1963). "Un théorème de compacité. (French)". C. R. Acad. Sci. Paris. Vol. 256. pp. 5042–5044. MR 0152860.
  • Barrett, John W.; Süli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut Mathématique (Belgrade). Nouvelle Série. 91 (105): 95–110. arXiv:1101.1990. doi:10.2298/PIM1205095B. MR 2963813. S2CID 12240189.
  • Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN 978-1-4614-5975-0. (Theorem II.5.16)
  • Lions, J.L. (1969). Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth. Vill. MR 0259693.
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: Birkhäuser. ISBN 978-3-0348-0512-4. (Sect.7.3)
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 106. ISBN 0-8218-0500-2. MR 1422252. (Proposition III.1.3)
  • Simon, J. (1986). "Compact sets in the space L(O,T;B)". Annali di Matematica Pura ed Applicata. 146: 65–96. doi:10.1007/BF01762360. MR 0916688. S2CID 123568207.
  • Chen, X.; Jüngel, A.; Liu, J.-G. (2014). "A note on Aubin-Lions-Dubinskii lemmas". Acta Appl. Math. Vol. 133. pp. 33–43. MR 3255076.
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Categories: