In mathematics, Salomon Bochner proved in 1946 that any Killing vector field of a compact Riemannian manifold with negative Ricci curvature must be zero. Consequently the isometry group of the manifold must be finite.
Discussion
The theorem is a corollary of Bochner's more fundamental result which says that on any connected Riemannian manifold of negative Ricci curvature, the length of a nonzero Killing vector field cannot have a local maximum. In particular, on a closed Riemannian manifold of negative Ricci curvature, every Killing vector field is identically zero. Since the isometry group of a complete Riemannian manifold is a Lie group whose Lie algebra is naturally identified with the vector space of Killing vector fields, it follows that the isometry group is zero-dimensional. Bochner's theorem then follows from the fact that the isometry group of a closed Riemannian manifold is compact.
Bochner's result on Killing vector fields is an application of the maximum principle as follows. As an application of the Ricci commutation identities, the formula
holds for any vector field X on a pseudo-Riemannian manifold. As a consequence, there is
In the case that X is a Killing vector field, this simplifies to
In the case of a Riemannian metric, the left-hand side is nonpositive at any local maximum of the length of X. However, on a Riemannian metric of negative Ricci curvature, the right-hand side is strictly positive wherever X is nonzero. So if X has a local maximum, then it must be identically zero in a neighborhood. Since Killing vector fields on connected manifolds are uniquely determined from their value and derivative at a single point, it follows that X must be identically zero.
Notes
- Kobayashi & Nomizu 1963, Corollary VI.5.4; Petersen 2016, Corollary 8.2.3.
- Kobayashi 1972.
- Wu 2017.
- Kobayashi & Nomizu 1963, Theorem VI.3.4; Petersen 2016, p. 316.
- Kobayashi & Nomizu 1963, Theorem VI.3.4.
- In an alternative notation, this says that
- Taylor 2011, p. 305.
- Petersen 2016, Proposition 8.2.1.
- Kobayashi & Nomizu 1963, Theorem 5.3; Petersen 2016, Theorem 8.2.2; Taylor 2011, p. 305.
References
- Bochner, S. (1946). "Vector fields and Ricci curvature" (PDF). Bulletin of the American Mathematical Society. 52 (9): 776–797. doi:10.1090/S0002-9904-1946-08647-4. MR 0018022. Zbl 0060.38301.
- Bochner, Salomon; Yano, Kentaro (1953). Curvature and Betti numbers. Annals of Mathematics Studies. Vol. 32. Princeton University Press. ISBN 0691095833. MR 0062505.
- Boothby, William M. (1954). "Book Review: Curvature and Betti numbers". Bulletin of the American Mathematical Society. 60 (4): 404–406. doi:10.1090/S0002-9904-1954-09834-8.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1963). Foundations of differential geometry. Vol I. Interscience Tracts in Pure and Applied Mathematics. Vol. 15. Reprinted in 1996. New York–London: John Wiley & Sons, Inc. ISBN 0-471-15733-3. MR 0152974. Zbl 0119.37502.
- Kobayashi, Shoshichi (1972). "Isometries of Riemannian Manifolds". Transformation groups in differential geometry (PDF). Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 70. Springer-Verlag. pp. 55−57. ISBN 9780387058481. MR 0355886.
- Petersen, Peter (2016). Riemannian geometry. Graduate Texts in Mathematics. Vol. 171 (Third edition of 1998 original ed.). Springer, Cham. doi:10.1007/978-3-319-26654-1. ISBN 978-3-319-26652-7. MR 3469435. Zbl 1417.53001.
- Taylor, Michael E. (2011). Partial differential equations II. Qualitative studies of linear equations. Applied Mathematical Sciences. Vol. 116 (Second edition of 1996 original ed.). New York: Springer. doi:10.1007/978-1-4419-7052-7. ISBN 978-1-4419-7051-0. MR 2743652. Zbl 1206.35003.
- Wu, Hung-Hsi (2017). The Bochner technique in differential geometry. Classical Topics in Mathematics. Vol. 6 (New expanded ed.). Beijing: Higher Education Press. pp. 30–32. ISBN 978-7-04-047838-9. MR 3838345.
This differential geometry-related article is a stub. You can help Misplaced Pages by expanding it. |