Protein-coding gene in humans
Cdc42 effector protein 3 is a protein that in humans is encoded by the CDC42EP3 gene .
CDC42, a small Rho GTPase, regulates the formation of F-actin-containing structures through its interaction with the downstream effector proteins. The protein encoded by this gene is a member of the Borg family of CDC42 effector proteins. Borg family proteins contain a CRIB (Cdc42/Rac interactive-binding) domain. They bind to, and negatively regulate the function of, CDC42. This protein can interact with CDC42, as well as with the ras homolog gene family, member Q (ARHQ/TC10). Expression of this protein in fibroblasts has been shown to induce pseudopodia formation.
Interactions
CDC42EP3 has been shown to interact with CDC42 and RHOQ .
References
^ GRCh38: Ensembl release 89: ENSG00000163171 – Ensembl , May 2017
^ GRCm38: Ensembl release 89: ENSMUSG00000036533 – Ensembl , May 2017
"Human PubMed Reference:" . National Center for Biotechnology Information, U.S. National Library of Medicine .
"Mouse PubMed Reference:" . National Center for Biotechnology Information, U.S. National Library of Medicine .
^ Alberts AS, Bouquin N, Johnston LH, Treisman R (May 1998). "Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7" . J Biol Chem . 273 (15): 8616–22. doi :10.1074/jbc.273.15.8616 . PMID 9535835 .
Hirsch DS, Pirone DM, Burbelo PD (Mar 2001). "A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes" . J Biol Chem . 276 (2): 875–83. doi :10.1074/jbc.M007039200 . PMID 11035016 .
^ "Entrez Gene: CDC42EP3 CDC42 effector protein (Rho GTPase binding) 3" .
^ Joberty, G; Perlungher R R; Macara I G (Oct 1999). "The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins" . Mol. Cell. Biol . 19 (10): 6585–97. doi :10.1128/MCB.19.10.6585 . ISSN 0270-7306 . PMC 84628 . PMID 10490598 .
External links
Further reading
Joberty G, Perlungher RR, Macara IG (2000). "The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins" . Mol. Cell. Biol . 19 (10): 6585–97. doi :10.1128/MCB.19.10.6585 . PMC 84628 . PMID 10490598 .
Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination" . Genome Res . 10 (11): 1788–95. doi :10.1101/gr.143000 . PMC 310948 . PMID 11076863 .
Wiemann S, Weil B, Wellenreuther R, et al. (2001). "Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs" . Genome Res . 11 (3): 422–35. doi :10.1101/gr.GR1547R . PMC 311072 . PMID 11230166 .
Simpson JC, Wellenreuther R, Poustka A, et al. (2001). "Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing" . EMBO Rep . 1 (3): 287–92. doi :10.1093/embo-reports/kvd058 . PMC 1083732 . PMID 11256614 .
Joberty G, Perlungher RR, Sheffield PJ, et al. (2001). "Borg proteins control septin organization and are negatively regulated by Cdc42". Nat. Cell Biol . 3 (10): 861–6. doi :10.1038/ncb1001-861 . PMID 11584266 . S2CID 58805 .
Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences" . Proc. Natl. Acad. Sci. U.S.A . 99 (26): 16899–903. Bibcode :2002PNAS...9916899M . doi :10.1073/pnas.242603899 . PMC 139241 . PMID 12477932 .
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs" . Nat. Genet . 36 (1): 40–5. doi :10.1038/ng1285 . PMID 14702039 .
Ballif BA, Villén J, Beausoleil SA, et al. (2005). "Phosphoproteomic analysis of the developing mouse brain" . Mol. Cell. Proteomics . 3 (11): 1093–101. doi :10.1074/mcp.M400085-MCP200 . PMID 15345747 .
Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)" . Genome Res . 14 (10B): 2121–7. doi :10.1101/gr.2596504 . PMC 528928 . PMID 15489334 .
Wiemann S, Arlt D, Huber W, et al. (2004). "From ORFeome to biology: a functional genomics pipeline" . Genome Res . 14 (10B): 2136–44. doi :10.1101/gr.2576704 . PMC 528930 . PMID 15489336 .
Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4" . Nature . 434 (7034): 724–31. Bibcode :2005Natur.434..724H . doi :10.1038/nature03466 . PMID 15815621 .
Stelzl U, Worm U, Lalowski M, et al. (2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell . 122 (6): 957–68. doi :10.1016/j.cell.2005.08.029 . hdl :11858/00-001M-0000-0010-8592-0 . PMID 16169070 . S2CID 8235923 .
Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature . 437 (7062): 1173–8. Bibcode :2005Natur.437.1173R . doi :10.1038/nature04209 . PMID 16189514 . S2CID 4427026 .
Mehrle A, Rosenfelder H, Schupp I, et al. (2006). "The LIFEdb database in 2006" . Nucleic Acids Res . 34 (Database issue): D415–8. doi :10.1093/nar/gkj139 . PMC 1347501 . PMID 16381901 .
Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks" . Cell . 127 (3): 635–48. doi :10.1016/j.cell.2006.09.026 . PMID 17081983 . S2CID 7827573 .
Categories :
CDC42EP3
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑