Names | |
---|---|
Other names 6-FAM | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.164.295 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C21H12O7 |
Molar mass | 376.320 g·mol |
Hazards | |
GHS labelling: | |
Pictograms | |
Signal word | Warning |
Hazard statements | H315, H319, H335 |
Precautionary statements | P261, P305+P351+P338 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
6-Carboxyfluorescein (6-FAM) is a fluorescent dye with an absorption wavelength of 495 nm and an emission wavelength of 517 nm. A carboxyfluorescein molecule is a fluorescein molecule with a carboxyl group added. They are commonly used as a tracer agents. It is used in the sequencing of nucleic acids and in the labeling of nucleotides.
Commercially available FAM is a mixture of two isomers, 5-FAM and 6-FAM, and the correct name is 5(6)-carboxyfluorescein.
The dyes are membrane-impermeant and can be loaded into cells by microinjection or scrape loading. It can be incorporated into liposomes, and allows for the tracking of liposomes as they pass through the body. In addition, carboxyfluorescein has been used to track division of cells. In vascular plants, 5(6)-carboxyfluorescein can be used as a symplastic tracer. It is able to move through the phloem due to its structural similarity to sucrose. It is typically loaded into the leaves in order to gain access to the phloem. This can be done by scraping, cutting, or weakening the leaf’s cuticle with an herbicide.
Popular derivatives for cell tracing purposes are carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and carboxyfluorescein succinimidyl ester (CFSE).
See also
References
- Molecular Imaging Products Company (2005-08-26). "5-(and-6)-Carboxyfluorescein (5-(and-6)- FAM,mixed isomer) 100mg". Retrieved 2006-08-26.
- Parish, Christopher (December 1999). "Fluorescent dyes for lymphocyte migration and proliferation studies". Immunology and Cell Biology. 77 (6). Blackwell Synergy: 499–508. doi:10.1046/j.1440-1711.1999.00877.x. PMID 10571670. S2CID 2194612. Retrieved 2006-08-26.
- Schulz, Alexander; Liesche, Johannes (2013). "Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders". Frontiers in Plant Science. 4: 207. doi:10.3389/fpls.2013.00207. ISSN 1664-462X. PMC 3685819. PMID 23802006.
- Martens, Helle Juel; Schulz, Alexander; Rademaker, Hanna; Andersen, Signe R.; Binczycki, Piotr; Gao, Chen; Liesche, Johannes (2019-04-01). "Direct Comparison of Leaf Plasmodesma Structure and Function in Relation to Phloem-Loading Type". Plant Physiology. 179 (4): 1768–1778. doi:10.1104/pp.18.01353. ISSN 0032-0889. PMC 6446768. PMID 30723179.
- Zambryski, P. C.; Hempel, F. D.; Barella, S.; Gisel, A. (1999-05-01). "Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices". Development. 126 (9): 1879–1889. doi:10.1242/dev.126.9.1879. ISSN 0950-1991. PMID 10101122.