Misplaced Pages

Catalytically competent protonation state

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Catalytically competent protonation state" – news · newspapers · books · scholar · JSTOR (June 2010) (Learn how and when to remove this message)
This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (June 2010) (Learn how and when to remove this message)
(Learn how and when to remove this message)

The catalytically competent protonation state is the catalytically active protonation state of an enzyme. An enzyme is a protein, which catalyzes a chemical reaction. Proteins and enzymes consist of amino acids, some of which are titratable (i.e., they can alter their charge when the pH of the solution changes), and an enzyme commonly needs a set of specific residues in its active site to occupy a specific protonation state to be catalytically active.

An example of this phenomenon is provided by hen egg white lysozyme - a lysozyme that has two acidic residues in its active site that are important for catalytic activity: Glu35 and Asp 52. For hen egg white lysozyme to be catalytically active, Glu35 must be neutral (i.e., be protonated), whereas Asp 52 must be negatively charged (i.e., it has lost its proton). The protonation state Glu35H,Asp52– is thus the catalytically competent protonation state of hen egg white lysozyme, where H denotes the protonated form of the Glu.

pH-activity profiles

Since an enzyme is active only when it is in the catalytically competent protonation state (i.e., it occupies a specific protonation state), it follows that the fraction of enzyme molecules in the catalytically competent protonation state determines how active a population of enzyme molecules are. The fractional population of the catalytically competent protonation state is thus a significant quantity, and the pH-dependence of the fractional population of the catalytically competent protonation state determines the pH-activity profile of the enzyme.

The population of a catalytically competent protonation state can be predicted using protein pKa calculations.

Category: