Misplaced Pages

Chlorine trifluoride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from ClF3) Chemical compound
Chlorine trifluoride
Skeletal formula of chlorine trifluoride with some measurements
Skeletal formula of chlorine trifluoride with some measurements
Spacefill model of chlorine trifluoride
Spacefill model of chlorine trifluoride
Names
Systematic IUPAC name Trifluoro-λ-chlorane (substitutive)
Other names Chlorotrifluoride
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.029.301 Edit this at Wikidata
EC Number
  • 232-230-4
Gmelin Reference 1439
MeSH chlorine+trifluoride
PubChem CID
RTECS number
  • FO2800000
UNII
UN number 1749
CompTox Dashboard (EPA)
InChI
  • InChI=1S/ClF3/c2-1(3)4Key: JOHWNGGYGAVMGU-UHFFFAOYSA-N
  • InChI=1/ClF3/c2-1(3)4Key: JOHWNGGYGAVMGU-UHFFFAOYAB
SMILES
  • F(F)F
  • ..F
Properties
Chemical formula ClF3
Molar mass 92.45 g·mol
Appearance Colorless gas or greenish-yellow liquid
Odor Sweet, pungent, irritating, suffocating
Density 3.779 g/L
Melting point −76.34 °C (−105.41 °F; 196.81 K)
Boiling point 11.75 °C (53.15 °F; 284.90 K) (decomposes at 180 °C, 356 °F, 453 K)
Solubility in water Reacts with water
Solubility Soluble in carbon tetrachloride but explosive in high concentrations. Reacts with hydrogen-containing compounds e.g. hydrogen, methane, benzene, ether, ammonia.
Vapor pressure 175 kPa
Magnetic susceptibility (χ) −26.5×10 cm/mol
Viscosity 91.82 μPa s
Structure
Molecular shape T-shaped molecular geometry
Thermochemistry
Heat capacity (C) 63.9 J K mol
Std molar
entropy
(S298)
281.6 J K mol
Std enthalpy of
formation
fH298)
−163.2 kJ mol
Gibbs free energyfG) −123.0 kJ mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Very toxic, very corrosive, powerful oxidizer, violent hydrolysis
GHS labelling:
Pictograms GHS03: Oxidizing GHS05: Corrosive GHS06: Toxic GHS08: Health hazard
Signal word Danger
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerinSpecial hazard W+OX: Reacts with water in an unusual or dangerous manner AND is oxidizer
4 0 4W
OX
Flash point Noncombustible
Lethal dose or concentration (LD, LC):
LC50 (median concentration) 95 ppm (rat, 4 hr)
178 ppm (mouse, 1 hr)
230 ppm (monkey, 1 hr)
299 ppm (rat, 1 hr)
NIOSH (US health exposure limits):
PEL (Permissible) C 0.1 ppm (0.4 mg/m)
REL (Recommended) C 0.1 ppm (0.4 mg/m)
IDLH (Immediate danger) 20 ppm
Safety data sheet (SDS)
Related compounds
Related compounds Chlorine pentafluoride
Chlorine monofluoride
Bromine trifluoride
Iodine trifluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Chlorine trifluoride is an interhalogen compound with the formula ClF3. It is a colorless, poisonous, corrosive, and extremely reactive gas that condenses to a pale-greenish yellow liquid, the form in which it is most often sold (pressurized at room temperature). It is famous for its extreme oxidation properties. The compound is primarily of interest in plasmaless cleaning and etching operations in the semiconductor industry, in nuclear reactor fuel processing, historically as a component in rocket fuels, and various other industrial operations owing to its corrosive nature.

Preparation, structure, and properties

It was first reported in 1930 by Ruff and Krug who prepared it by fluorination of chlorine; this also produced Chlorine monofluoride (ClF) and the mixture was separated by distillation.

3 F2 + Cl2 → 2 ClF3

Several hundred tons are produced annually.

The molecular geometry of ClF3 is approximately T-shaped, with one short bond (1.598 Å) and two long bonds (1.698 Å). This structure agrees with the prediction of VSEPR theory, which predicts lone pairs of electrons as occupying two equatorial positions of a hypothetic trigonal bipyramid. The elongated Cl-F axial bonds are consistent with hypervalent bonding.

Reactions

ClF3 also reacts explosively with water to give hydrogen fluoride and hydrogen chloride, along with oxygen and oxygen difluoride (OF2):

ClF3 + H2O → HF + HCl + OF2
ClF3 + 2H2O → 3HF + HCl + O2

Upon heating, it decomposes:

ClF3 ⇌ ClF + F2

Reactions with many metals and even metal oxides give fluorides:

6NiO + 4 ClF3 → 6 NiF2 + 3 O2 + 2 Cl2
AgCl + ClF3 → AgF2 + ClF + 1/2 Cl2

ClF3 is used to produce uranium hexafluoride:

U + 3 ClF3 → UF6 + 3 ClF

With phosphorus, it yields phosphorus trichloride (PCl3) and phosphorus pentafluoride (PF5), while sulfur yields sulfur dichloride (SCl2) and sulfur tetrafluoride (SF4).

It reacts with caesium fluoride to give a salt containing the anion F(ClF3)−3.

Uses

Semiconductor industry

In the semiconductor industry, chlorine trifluoride is used to clean chemical vapour deposition chambers. It can be used to remove semiconductor material from the chamber walls without the need to dismantle the chamber. Unlike most of the alternative chemicals used in this role, it does not need to be activated by the use of plasma since the heat of the chamber is sufficient to make it decompose and react with the semiconductor material.

Fluorination reagent

ClF3 is used for the fluorination of a variety of compounds.

Military applications (defunct)

Chlorine trifluoride has been investigated as a high-performance storable oxidizer in rocket propellant systems. Handling concerns, however, severely limit its use. The following passage by rocket scientist John D. Clark is widely quoted in descriptions of the substance's extremely hazardous nature:

It is, of course, extremely toxic, but that's the least of the problem. It is hypergolic with every known fuel, and so rapidly hypergolic that no ignition delay has ever been measured. It is also hypergolic with such things as cloth, wood, and test engineers, not to mention asbestos, sand, and water—with which it reacts explosively. It can be kept in some of the ordinary structural metals—steel, copper, aluminum, etc.—because of the formation of a thin film of insoluble metal fluoride that protects the bulk of the metal, just as the invisible coat of oxide on aluminium keeps it from burning up in the atmosphere. If, however, this coat is melted or scrubbed off, and has no chance to reform, the operator is confronted with the problem of coping with a metal-fluorine fire. For dealing with this situation, I have always recommended a good pair of running shoes.

Chlorine pentafluoride (ClF5) has also been investigated as a potential rocket oxidizer. It offered improved specific impulse over chlorine trifluoride, but with all of the same difficulties in handling. Neither compound has been used in any operational rocket propulsion system.

Under the code name N-Stoff ("substance N"), chlorine trifluoride was investigated for military applications by the Kaiser Wilhelm Institute in Nazi Germany not long before the start of World War II. Tests were made against mock-ups of the Maginot Line fortifications, and it was found to be an extremely effective incendiary weapon and poison gas. From 1938, construction commenced on a partly bunkered, partly subterranean 14,000 m (150,000 sq ft) munitions factory, the Falkenhagen industrial complex, which was intended to produce 90 tonnes of N-Stoff per month, in addition to sarin (a deadly nerve agent). However, by the time it was captured by the advancing Red Army in 1945, the factory had produced only about 30 to 50 tonnes, at a cost of over 100 German Reichsmarks per kilogram. N-Stoff was never used in war.

Hazards

ClF3 is a very strong oxidizer. It is extremely reactive with most inorganic and organic materials and will combust many otherwise non-flammable materials without any ignition source. These reactions are often violent and in some cases explosive. Steel, copper, and nickel are not consumed because a passivation layer of metal fluoride will form which prevents further corrosion, but molybdenum, tungsten, and titanium are unsuitable as their fluorides are volatile. ClF3 will quickly corrode even noble metals like iridium, platinum, or gold, oxidizing them to chlorides and fluorides.

This oxidizing power, surpassing that of oxygen, causes ClF3 to react vigorously with many other materials often thought of as incombustible and refractory. It ignites sand, asbestos, glass, and even ashes of substances that have already burned in oxygen. In one particular industrial accident, a spill of 900 kg of ClF3 burned through 30 cm of concrete and 90 cm of gravel beneath. There is exactly one known fire control/suppression method capable of dealing with ClF3‍—‍flooding the fire with nitrogen or noble gases such as argon. Barring that, the area must simply be kept cool until the reaction ceases. The compound reacts with water-based suppressors and CO2, rendering them counterproductive.

Exposure to larger amounts of ClF3, as a liquid or as a gas, ignites living tissue, resulting in severe chemical and thermal burns. ClF3 reacts violently with water and exposure to the reaction also results in burns. The products of hydrolysis are mainly hydrofluoric acid and hydrochloric acid, which are usually released as steam or vapor due to the highly exothermic nature of the reaction.

See also

Explanatory notes

^a Using data from Economic History Services and The Inflation Calculator it can be calculated that the sum of 100 Reichsmarks in 1941 is approximately equivalent to US$4,652.50 in 2021. Reichsmark exchange rate values from 1942 to 1944 are fragmentary.

References

  1. ^ "Chlorine trifluoride". PubChem Compound. National Center for Biotechnology Information. 4 July 2023. Retrieved 8 July 2023.
  2. ClF3/Hydrazine Archived 2007-02-02 at the Wayback Machine at the Encyclopedia Astronautica.
  3. ^ NIOSH Pocket Guide to Chemical Hazards. "#0117". National Institute for Occupational Safety and Health (NIOSH).
  4. ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.58. ISBN 978-1-4398-5511-9.
  5. Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.132. ISBN 978-1-4398-5511-9.
  6. Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 5.8. ISBN 978-1-4398-5511-9.
  7. "Chlorine trifluoride". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  8. Habuka, Hitoshi; Sukenobu, Takahiro; Koda, Hideyuki; Takeuchi, Takashi; Aihara, Masahiko (2004). "Silicon Etch Rate Using Chlorine Trifluoride". Journal of the Electrochemical Society. 151 (11): G783 – G787. Bibcode:2004JElS..151G.783H. doi:10.1149/1.1806391. Archived from the original on 2022-01-25. Retrieved 2017-04-11.
  9. Xi, Ming et al. (1997) U.S. patent 5,849,092 "Process for chlorine trifluoride chamber cleaning"
  10. Board on Environmental Studies and Toxicology, (BEST) (2006). Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 5. Washington D.C.: National Academies Press. p. 40. ISBN 978-0-309-10358-9. (available from National Academies Press Archived 2014-11-07 at the Wayback MachineOpen access icon)
  11. Boyce, C. Bradford and Belter, Randolph K. (1998) U.S. patent 6,034,016 "Method for regenerating halogenated Lewis acid catalysts"
  12. Otto Ruff, H. Krug (1930). "Über ein neues Chlorfluorid-CIF3" [A New Chlorofluoride, ClF3]. Zeitschrift für anorganische und allgemeine Chemie. 190 (1): 270–276. doi:10.1002/zaac.19301900127.
  13. ^ Aigueperse, Jean; Mollard, Paul; Devilliers, Didier; Chemla, Marius; Faron, Robert; Romano, René; Cuer, Jean Pierre (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a11_307. ISBN 3-527-30673-0.
  14. Smith, D. F. (1953). "The Microwave Spectrum and Structure of Chlorine Trifluoride". The Journal of Chemical Physics. 21 (4): 609–614. Bibcode:1953JChPh..21..609S. doi:10.1063/1.1698976. hdl:2027/mdp.39015095092865.
  15. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 828. ISBN 978-0-08-037941-8.
  16. Scheibe, Benjamin; Karttunen, Antti J.; Müller, Ulrich; Kraus, Florian (5 October 2020). "Cs[Cl 3 F 10 ]: A Propeller-Shaped [Cl 3 F 10 ] − Anion in a Peculiar A [5] B [5] Structure Type". Angewandte Chemie International Edition. 59 (41): 18116–18119. doi:10.1002/anie.202007019. PMC 7589245. PMID 32608053.
  17. ^ Clark, John D. (1972). Ignition! An Informal History of Liquid Rocket Propellants. Rutgers University Press. p. 214. ISBN 978-0-8135-0725-5.
  18. Müller, Benno (24 November 2005). "A poisonous present". Nature. Review of: Kampfstoff-Forschung im Nationalsozialismus: Zur Kooperation von Kaiser-Wilhelm-Instituten, Militär und Industrie by Florian Schmaltz (Wallstein, 2005, 676 pages). 438 (7067): 427. Bibcode:2005Natur.438..427M. doi:10.1038/438427a.
  19. "Germany 2004". www.bunkertours.co.uk. Archived from the original on 2006-06-13. Retrieved 2006-06-13.
  20. Safetygram. Air Products
  21. "Chlorine Trifluoride Handling Manual". Canoga Park, CA: Rocketdyne. September 1961. p. 24. Archived from the original on 2013-04-08. Retrieved 2012-09-19.
  22. Patnaik, Pradyot (2007). A comprehensive guide to the hazardous properties of chemical substances (3rd ed.). Wiley-Interscience. p. 478. ISBN 978-0-471-71458-3.
  23. Officer, Lawrence H. (2002), Exchange Rate Between the United States Dollar and Forty Other Countries, 1913–1999, EH.net (Economic History Services), archived from the original on 15 June 2006, retrieved 7 July 2023
  24. "The Inflation Calculator". S. Morgan Friedman's 'Webpage': Ceci N'est Pas Une Homepage. Retrieved 7 July 2023.

Further reading

External links

Blood agents
Blister agents
Arsenicals
  • Ethyldichloroarsine (ED)
  • Methyldichloroarsine (MD)
  • Phenyldichloroarsine (PD)
  • Lewisite (L)
  • Lewisite 2 (L2)
  • Lewisite 3 (L3)
  • Sulfur mustards
    Nitrogen mustards
    Nettle agents
    Other
    Nerve agents
    G-agents
    V-agents
    GV agents
    Novichok agents
    Carbamates
    Other
    Precursors
    Neurotoxins
    Pulmonary/
    choking agents
    Vomiting agents
    Incapacitating
    agents
    Lachrymatory
    agents
    Malodorant agents
    Cornea-clouding agents
    Biological toxins
    Other
    Chlorine compounds
    Chlorides and acids
    Chlorine fluorides
    Chlorine oxides
    Chlorine oxyfluorides
    Chlorine(I) derivatives
    Fluorine compounds
    Salts and covalent derivatives of the fluoride ion
    HF ?HeF2
    LiF BeF2 BF
    BF3
    B2F4
    +BO3
    CF4
    CxFy
    +CO3
    NF3
    FN3
    N2F2
    NF
    N2F4
    NF2
    ?NF5
    OF2
    O2F2
    OF
    O3F2
    O4F2
    ?OF4
    F2 Ne
    NaF MgF2 AlF
    AlF3
    SiF4 P2F4
    PF3
    PF5
    S2F2
    SF2
    S2F4
    SF3
    SF4
    S2F10
    SF6
    +SO4
    ClF
    ClF3
    ClF5
    ?ArF2
    ?ArF4
    KF CaF
    CaF2
    ScF3 TiF2
    TiF3
    TiF4
    VF2
    VF3
    VF4
    VF5
    CrF2
    CrF3
    CrF4
    CrF5
    ?CrF6
    MnF2
    MnF3
    MnF4
    ?MnF5
    FeF2
    FeF3
    FeF4
    CoF2
    CoF3
    CoF4
    NiF2
    NiF3
    NiF4
    CuF
    CuF2
    ?CuF3
    ZnF2 GaF2
    GaF3
    GeF2
    GeF4
    AsF3
    AsF5
    Se2F2
    SeF4
    SeF6
    +SeO3
    BrF
    BrF3
    BrF5
    KrF2
    ?KrF4
    ?KrF6
    RbF SrF
    SrF2
    YF3 ZrF2
    ZrF3
    ZrF4
    NbF4
    NbF5
    MoF4
    MoF5
    MoF6
    TcF4
    TcF
    5

    TcF6
    RuF3
    RuF
    4

    RuF5
    RuF6
    RhF3
    RhF4
    RhF5
    RhF6
    PdF2
    Pd
    PdF4
    ?PdF6
    Ag2F
    AgF
    AgF2
    AgF3
    CdF2 InF
    InF3
    SnF2
    SnF4
    SbF3
    SbF5
    TeF4
    ?Te2F10
    TeF6
    +TeO3
    IF
    IF3
    IF5
    IF7
    +IO3
    XeF2
    XeF4
    XeF6
    ?XeF8
    CsF BaF2   LuF3 HfF4 TaF5 WF4
    WF5
    WF6
    ReF4
    ReF5
    ReF6
    ReF7
    OsF4
    OsF5
    OsF6
    ?OsF
    7

    ?OsF
    8
    IrF2
    IrF3
    IrF4
    IrF5
    IrF6
    PtF2
    Pt
    PtF4
    PtF5
    PtF6
    AuF
    AuF3
    Au2F10
    ?AuF6
    AuF5•F2
    Hg2F2
    HgF2
    ?HgF4
    TlF
    TlF3
    PbF2
    PbF4
    BiF3
    BiF5
    ?PoF2
    PoF4
    PoF6
    AtF
    ?AtF3
    ?AtF5
    RnF2
    ?RnF
    4

    ?RnF
    6
    FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
    LaF3 CeF3
    CeF4
    PrF3
    PrF4
    NdF2
    NdF3
    NdF4
    PmF3 SmF
    SmF2
    SmF3
    EuF2
    EuF3
    GdF3 TbF3
    TbF4
    DyF2
    DyF3
    DyF4
    HoF3 ErF3 TmF2
    TmF3
    YbF2
    YbF3
    AcF3 ThF3
    ThF4
    PaF4
    PaF5
    UF3
    UF4
    UF5
    UF6
    NpF3
    NpF4
    NpF5
    NpF6
    PuF3
    PuF4
    PuF5
    PuF6
    AmF2
    AmF3
    AmF4
    ?AmF6
    CmF3
    CmF4
     ?CmF6
    BkF3
    BkF
    4
    CfF3
    CfF4
    EsF3
    EsF4
    ?EsF6
    Fm Md No
    PF−6, AsF−6, SbF−6 compounds
    AlF2−5, AlF3−6 compounds
    chlorides, bromides, iodides
    and pseudohalogenides
    SiF2−6, GeF2−6 compounds
    Oxyfluorides
    Organofluorides
    with transition metal,
    lanthanide, actinide, ammonium
    nitric acids
    bifluorides
    thionyl, phosphoryl,
    and iodosyl
    Chemical formulas
    Categories: