This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Closed manifold" – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove this message) |
In mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components.
Examples
The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RP is a closed n-dimensional manifold. The complex projective space CP is a closed 2n-dimensional manifold. A line is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary.
Properties
Every closed manifold is a Euclidean neighborhood retract and thus has finitely generated homology groups.
If is a closed connected n-manifold, the n-th homology group is or 0 depending on whether is orientable or not. Moreover, the torsion subgroup of the (n-1)-th homology group is 0 or depending on whether is orientable or not. This follows from an application of the universal coefficient theorem.
Let be a commutative ring. For -orientable with fundamental class , the map defined by is an isomorphism for all k. This is the Poincaré duality. In particular, every closed manifold is -orientable. So there is always an isomorphism .
Open manifolds
For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and a line is non-compact since a line is non-compact, but this is not an open manifold since the circle (one of its components) is compact.
Abuse of language
Most books generally define a manifold as a space that is, locally, homeomorphic to Euclidean space (along with some other technical conditions), thus by this definition a manifold does not include its boundary when it is embedded in a larger space. However, this definition doesn’t cover some basic objects such as a closed disk, so authors sometimes define a manifold with boundary and abusively say manifold without reference to the boundary. But normally, a compact manifold (compact with respect to its underlying topology) can synonymously be used for closed manifold if the usual definition for manifold is used.
The notion of a closed manifold is unrelated to that of a closed set. A line is a closed subset of the plane, and a manifold, but not a closed manifold.
Use in physics
The notion of a "closed universe" can refer to the universe being a closed manifold but more likely refers to the universe being a manifold of constant positive Ricci curvature.
See also
References
- See Hatcher 2002, p.231
- See Hatcher 2002, p.536
- See Hatcher 2002, p.236
- See Hatcher 2002, p.238
- See Hatcher 2002, p.250
- Michael Spivak: A Comprehensive Introduction to Differential Geometry. Volume 1. 3rd edition with corrections. Publish or Perish, Houston TX 2005, ISBN 0-914098-70-5.
- Allen Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2002.
Manifolds (Glossary) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Basic concepts | |||||||||
Main results (list) | |||||||||
Maps | |||||||||
Types of manifolds | |||||||||
Tensors |
| ||||||||
Related | |||||||||
Generalizations |