Misplaced Pages

Compact finite difference

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article may be in need of reorganization to comply with Misplaced Pages's layout guidelines. Please help by editing the article to make improvements to the overall structure. (January 2015) (Learn how and when to remove this message)
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2015) (Learn how and when to remove this message)
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources.
Find sources: "Compact finite difference" – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this message)
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (November 2016)
(Learn how and when to remove this message)

The compact finite difference formulation, or Hermitian formulation, is a numerical method to compute finite difference approximations. Such approximations tend to be more accurate for their stencil size (i.e. their compactness) and, for hyperbolic problems, have favorable dispersive error and dissipative error properties when compared to explicit schemes. A disadvantage is that compact schemes are implicit and require to solve a diagonal matrix system for the evaluation of interpolations or derivatives at all grid points. Due to their excellent stability properties, compact schemes are a popular choice for use in higher-order numerical solvers for the Navier-Stokes Equations.

Example

The classical Pade scheme for the first derivative at a cell with index i {\displaystyle i} ( f i {\displaystyle f'_{i}} ) reads;

1 4 f i 1 + f i + 1 4 f i + 1 = 3 2 f i + 1 f i 1 2 Δ . {\displaystyle {\frac {1}{4}}f'_{i-1}+f'_{i}+{\frac {1}{4}}f'_{i+1}={\frac {3}{2}}{\frac {f_{i+1}-f_{i-1}}{2\Delta }}.}

Where Δ {\displaystyle \Delta } is the spacing between points with index i 1 ,   i   &   i + 1 {\displaystyle i-1,\ i\ \&\ i+1} . The equation yields a fourth-order accurate solution for f {\displaystyle f'} when supplemented with suitable boundary conditions (typically periodic). When compared to the 4th-order accurate central explicit method;

f i = f i + 2 + 8 f i + 1 8 f i 1 + f i 2 12 Δ , {\displaystyle f'_{i}={\frac {-f_{i+2}+8f_{i+1}-8f_{i-1}+f_{i-2}}{12\Delta }},}

the former (implicit) method is compact as it only uses values on a 3-point stencil instead of 5.

Derivation of compact schemes

Compact schemes are derived using a Taylor series expansion. Say we wish to construct a compact scheme with a three-point stencil (as in the example):

α 1 f i 1 + f i + α 2 f i + 1 = b 1 f i + 1 + a f i + b 2 f i 1 . {\displaystyle \alpha _{1}f'_{i-1}+f'_{i}+\alpha _{2}f'_{i+1}=b_{1}f_{i+1}+af_{i}+b_{2}f_{i-1}.}

From a symmetry argument we deduce α 1 = α 2 = α {\displaystyle \alpha _{1}=\alpha _{2}=\alpha } , a = 0 {\displaystyle a=0} and b 1 = b 2 = b {\displaystyle b_{1}=-b_{2}=-b} , resulting in a two-parameter system,

α f i 1 + f i + α f i + 1 + b f i + 1 b f i 1 = 0. {\displaystyle \alpha f'_{i-1}+f'_{i}+\alpha f'_{i+1}+bf_{i+1}-bf_{i-1}=0.}

We write the expansions around x i {\displaystyle x_{i}} up to a reasonable number of terms and using notation d n f d x n = f n {\displaystyle {\frac {\mathrm {d} ^{n}f}{\mathrm {d} x^{n}}}=f^{n}} ,

f i + 1 = f i + Δ f i + 1 2 Δ 2 f i 2 + 1 6 Δ 3 f i 3 + 1 24 Δ 4 f i 4 + e t c . , f i 1 = f i Δ f i + 1 2 Δ 2 f i 2 1 6 Δ 3 f i 3 + 1 24 Δ 4 f i 4 + e t c . , f i = f i , f i + 1 = f i + Δ f i 2 + 1 2 Δ 2 f i 3 + 1 6 Δ 3 f i 4 + 1 24 Δ 4 f i 5 + e t c . , f i 1 = f i Δ f i 2 + 1 2 Δ 2 f i 3 1 6 Δ 3 f i 4 + 1 24 Δ 4 f i 5 + e t c . , {\displaystyle {\begin{aligned}f_{i+1}&=&f_{i}+\Delta &f'_{i}+{\frac {1}{2}}\Delta ^{2}&f_{i}^{2}+{\frac {1}{6}}\Delta ^{3}&f_{i}^{3}+{\frac {1}{24}}\Delta ^{4}f_{i}^{4}+\mathrm {etc.} ,\\f_{i-1}&=&f_{i}-\Delta &f'_{i}+{\frac {1}{2}}\Delta ^{2}&f_{i}^{2}-{\frac {1}{6}}\Delta ^{3}&f_{i}^{3}+{\frac {1}{24}}\Delta ^{4}f_{i}^{4}+\mathrm {etc.} ,\\f'_{i}&=&&f'_{i},\\f'_{i+1}&=&&f'_{i}+\Delta &f_{i}^{2}+{\frac {1}{2}}\Delta ^{2}&f_{i}^{3}+{\frac {1}{6}}\Delta ^{3}f_{i}^{4}+{\frac {1}{24}}\Delta ^{4}f_{i}^{5}+\mathrm {etc.} ,\\f'_{i-1}&=&&f'_{i}-\Delta &f_{i}^{2}+{\frac {1}{2}}\Delta ^{2}&f_{i}^{3}-{\frac {1}{6}}\Delta ^{3}f_{i}^{4}+{\frac {1}{24}}\Delta ^{4}f_{i}^{5}+\mathrm {etc.} ,\\\end{aligned}}}

Each column on the right-hand side gives an equation for the coefficients α , b {\displaystyle \alpha ,b} ,

f i :       b b = 0 ,   ( T r i v i a l ) f i :       2 Δ b + 1 + 2 α = 0 ,   ( e q .   1 ) f i 2 :       b b + α α = 0 ,   ( T r i v i a l ) f i 3 :       1 3 b Δ 3 + Δ 2 α = 0.   ( e q .   2 ) . {\displaystyle {\begin{aligned}f_{i}:&\ \ \ b-b&=0,&\ \mathrm {(Trivial)} \\f'_{i}:&\ \ \ 2\Delta b+1+2\alpha &=0,&\ \mathrm {(eq.\ 1)} \\f_{i}^{2}:&\ \ \ b-b+\alpha -\alpha &=0,&\ \mathrm {(Trivial)} \\f_{i}^{3}:&\ \ \ {\frac {1}{3}}b\Delta ^{3}+\Delta ^{2}\alpha &=0.&\ \mathrm {(eq.\ 2)} .\end{aligned}}}

We now have two equations for two unknowns and therefore stop checking for higher-order-term equations.

e q .   2 :   b = 3 Δ α , e q .   1 :   6 α + 1 + 2 α = 0 , α = 1 4 ,   a n d ,   b = 3 4 Δ , {\displaystyle {\begin{aligned}\mathrm {eq.\ 2} :&\ b={\frac {-3}{\Delta }}\alpha ,\rightarrow \\\mathrm {eq.\ 1} :&\ -6\alpha +1+2\alpha =0,\rightarrow \\&\alpha ={\frac {1}{4}},\ \mathrm {and} ,\ \rightarrow \\&b=-{\frac {3}{4\Delta }},\end{aligned}}}

which is indeed the scheme from the example.

Evaluation of a compact scheme

This section is empty. You can help by adding to it. (September 2020)

List of compact schemes

First derivative f i {\displaystyle f'_{i}}

4th order central scheme:

1 4 f i 1 + f i + 1 4 f i + 1 = 3 2 f i + 1 f i 1 2 Δ . {\displaystyle {\frac {1}{4}}f'_{i-1}+f'_{i}+{\frac {1}{4}}f'_{i+1}={\frac {3}{2}}{\frac {f_{i+1}-f_{i-1}}{2\Delta }}.}


6th order central scheme:

1 3 f i 1 + f i + 1 3 f i + 1 = 14 9 f i + 1 f i 1 2 Δ + 1 9 f i + 2 f i 2 4 Δ . {\displaystyle {\frac {1}{3}}f'_{i-1}+f'_{i}+{\frac {1}{3}}f'_{i+1}={\frac {14}{9}}{\frac {f_{i+1}-f_{i-1}}{2\Delta }}+{\frac {1}{9}}{\frac {f_{i+2}-f_{i-2}}{4\Delta }}.}


References

  1. Lele, S.K. (August 1992). "Compact finite difference schemes with spectral-like resolution". Journal of Computational Physics. 103 (1): 16–43. Bibcode:1992JCoPh.103...16L. doi:10.1016/0021-9991(92)90324-R.
Category: