Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
More precisely, a series of real numbers is said to converge conditionally if
exists (as a finite real number, i.e. not or ), but
A classic example is the alternating harmonic series given by which converges to , but is not absolutely convergent (see Harmonic series).
Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. Agnew's theorem describes rearrangements that preserve convergence for all convergent series.
The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R can converge.
A typical conditionally convergent integral is that on the non-negative real axis of (see Fresnel integral).