Misplaced Pages

Cyanoethylation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Cyanoethylation is a process for the attachment of CH2CH2CN group to another organic substrate. The method is used in the synthesis of organic compounds.

Cyanoethylation entails addition of protic nucleophiles to acrylonitrile. Typical protic nucleophiles are alcohols, thiols, and amines. Two new bonds form: C-H and C-X (X = carbon, nitrogen, sulfur, phosphorus, etc):

Y H + H 2 C = C H C N Y C H 2 C H 2 C N {\displaystyle \mathrm {YH+H_{2}C{=}CH{-}CN\longrightarrow Y{-}CH_{2}{-}CH_{2}{-}CN} }

The β-carbon atom that is furthest from the nitrile group is positively polarized and therefore binds the heteroatom on the nucleophile. Acrylonitrile is a Michael acceptor. The reaction is normally catalyzed by a base.

Tris(cyanoethyl)phosphine is produced by the cyanoethylation of phosphine.

Cyanethylation is used to prepared numerous commercial chemicals. Detailed laboratory procedures are available for several variants of this reaction.

  • Cyanoethylation of amines.
  • Cyanoethylation of phosphines.
  • Cyanoethylation of carbon nucleophiles. In one commercial example, acetone is cyanoethylated to give the keto hexanenitrile, a precursor to 2-methylpyridine.

An alternative method for cyanoethylation entails alkylation of the substrate with 3-chloropropionitrile.

De-cyanoethylation

Cyanoethyl is a protecting group. It is removed by treatment with base:

RNuCH2CH2CN + OH → RNu + CH2=CHCN + H2O

This methodology is popular in the synthesis of oligonucleotides.

References

  1. Eller, Karsten; Henkes, Erhard; Rossbacher, Roland; Höke, Hartmut (2000). "Amines, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_001. ISBN 3527306730.
  2. Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, ISBN 978-0-471-72091-1
  3. Hajime Kabashima, Hideshi Hattori (1998). "Cyanoethylation of Alcohols Over Solid Base Catalysts". Catalysis Today. 44 (1–4): 277–283. doi:10.1016/S0920-5861(98)00200-4..
  4. Trofimov, Boris A.; Arbuzova, Svetlana N.; Gusarova, Nina K. (1999). "Phosphine in the synthesis of organophosphorus compounds". Russian Chemical Reviews. 68 (3): 215–227. doi:10.1070/RC1999v068n03ABEH000464. S2CID 250775640.
  5. J. Cymerman-Craig, M. Moyle (1956). "N-2-Cyanoethylaniline". Organic Syntheses. 36: 6. doi:10.15227/orgsyn.036.0006.
  6. S. A. Heininger (1958). "3-(o-Chloroanilino)propionitrile". Organic Syntheses. 38: 14. doi:10.15227/orgsyn.038.0014.
  7. Theodore E. Snider, Don L. Morris, K. C. Srivastava, K. D. Berlin (1973). "1-Phenyl-4-Phosphorinanone". Organic Syntheses. 53: 98. doi:10.15227/orgsyn.053.0098.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. E. C. Horning A. F. Finelli (1950). "α-Phenyl-α-Carboethoxyglutaronitrile". Organic Syntheses. 30: 80. doi:10.15227/orgsyn.030.0080.
  9. Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399. ISBN 978-3527306732.
  10. Liu, Qiang; Van Der Marel, Gijsbert A.; Filippov, Dmitri V. (2019). "Chemical ADP-ribosylation: Mono-ADPr-peptides and oligo-ADP-ribose". Organic & Biomolecular Chemistry. 17 (22): 5460–5474. doi:10.1039/c9ob00501c. hdl:1887/85621. PMID 31112180. S2CID 160014127.
Category:
Cyanoethylation Add topic