Misplaced Pages

Graceful labeling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Graceful graph) Type of graph vertex labeling
A graceful labeling. Vertex labels are in black, edge labels in red.

In graph theory, a graceful labeling of a graph with m edges is a labeling of its vertices with some subset of the integers from 0 to m inclusive, such that no two vertices share a label, and each edge is uniquely identified by the absolute difference between its endpoints, such that this magnitude lies between 1 and m inclusive. A graph which admits a graceful labeling is called a graceful graph.

The name "graceful labeling" is due to Solomon W. Golomb; this type of labeling was originally given the name β-labeling by Alexander Rosa in a 1967 paper on graph labelings.

A major open problem in graph theory is the graceful tree conjecture or Ringel–Kotzig conjecture, named after Gerhard Ringel and Anton Kotzig, and sometimes abbreviated GTC (not to be confused with Kotzig's conjecture on regularly path connected graphs). It hypothesizes that all trees are graceful. It is still an open conjecture, although a related but weaker conjecture known as "Ringel's conjecture" was partially proven in 2020. Kotzig once called the effort to prove the conjecture a "disease".

Another weaker version of graceful labelling is near-graceful labeling, in which the vertices can be labeled using some subset of the integers on such that no two vertices share a label, and each edge is uniquely identified by the absolute difference between its endpoints (this magnitude lies on ).

Another conjecture in graph theory is Rosa's conjecture, named after Alexander Rosa, which says that all triangular cacti are graceful or nearly-graceful.

A graceful graph with edges 0 to m is conjectured to have no fewer than 3 m + 9 4 {\displaystyle \left\lceil {\sqrt {3m+{\tfrac {9}{4}}}}\right\rfloor } vertices, due to sparse ruler results. This conjecture has been verified for all graphs with 213 or fewer edges. A related conjecture is that the smallest 2m-valence graceful graph has 3 m 2 {\displaystyle 3m^{2}} edges, with the case for 6-valence shown below.

A graceful graph with 27 edges and 9 vertices

Selected results

See also

References

  1. Virginia Vassilevska, "Coding and Graceful Labeling of trees." SURF 2001. PostScript
  2. ^ Rosa, A. (1967), "On certain valuations of the vertices of a graph", Theory of Graphs (Internat. Sympos., Rome, 1966), New York: Gordon and Breach, pp. 349–355, MR 0223271.
  3. Wang, Tao-Ming; Yang, Cheng-Chang; Hsu, Lih-Hsing; Cheng, Eddie (2015), "Infinitely many equivalent versions of the graceful tree conjecture", Applicable Analysis and Discrete Mathematics, 9 (1): 1–12, doi:10.2298/AADM141009017W, MR 3362693
  4. Montgomery, Richard; Pokrovskiy, Alexey; Sudakov, Benny (2020). "A proof of Ringel's Conjecture". arXiv:2001.02665 .
  5. Huang, C.; Kotzig, A.; Rosa, A. (1982), "Further results on tree labellings", Utilitas Mathematica, 21: 31–48, MR 0668845.
  6. Hartnett, Kevin. "Rainbow Proof Shows Graphs Have Uniform Parts". Quanta Magazine. Retrieved 2020-02-29.
  7. Huang, C.; Kotzig, A.; Rosa, A. (1982), "Further results on tree labellings", Utilitas Mathematica, 21: 31–48, MR 0668845.
  8. Rosa, A. (1988), "Cyclic Steiner Triple Systems and Labelings of Triangular Cacti", Scientia, 1: 87–95.
  9. Morgan, David (2008), "All lobsters with perfect matchings are graceful", Bulletin of the Institute of Combinatorics and Its Applications, 53: 82–85, hdl:10402/era.26923.
  10. ^ Gallian, Joseph A. (1998), "A dynamic survey of graph labeling", Electronic Journal of Combinatorics, 5: Dynamic Survey 6, 43 pp. (389 pp. in 18th ed.) (electronic), MR 1668059.
  11. Aldred, R. E. L.; McKay, Brendan D. (1998), "Graceful and harmonious labellings of trees", Bulletin of the Institute of Combinatorics and Its Applications, 23: 69–72, MR 1621760.
  12. Horton, Michael P. (2003), Graceful Trees: Statistics and Algorithms.
  13. Fang, Wenjie (2010), A Computational Approach to the Graceful Tree Conjecture, arXiv:1003.3045, Bibcode:2010arXiv1003.3045F. See also Graceful Tree Verification Project
  14. Kotzig, Anton (1981), "Decompositions of complete graphs into isomorphic cubes", Journal of Combinatorial Theory, Series B, 31 (3): 292–296, doi:10.1016/0095-8956(81)90031-9, MR 0638285.
  15. Weisstein, Eric W. "Graceful graph". MathWorld.

External links

Further reading

  • (K. Eshghi) Introduction to Graceful Graphs, Sharif University of Technology, 2002.
  • (U. N. Deshmukh and Vasanti N. Bhat-Nayak), New families of graceful banana trees – Proceedings Mathematical Sciences, 1996 – Springer
  • (M. Haviar, M. Ivaska), Vertex Labellings of Simple Graphs, Research and Exposition in Mathematics, Volume 34, 2015.
  • (Ping Zhang), A Kaleidoscopic View of Graph Colorings, SpringerBriefs in Mathematics, 2016 – Springer
Categories: