Misplaced Pages

Great deluge algorithm

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Great Deluge algorithm)

The Great deluge algorithm (GD) is a generic algorithm applied to optimization problems. It is similar in many ways to the hill-climbing and simulated annealing algorithms.

The name comes from the analogy that in a great deluge a person climbing a hill will try to move in any direction that does not get his/her feet wet in the hope of finding a way up as the water level rises.

In a typical implementation of the GD, the algorithm starts with a poor approximation, S, of the optimum solution. A numerical value called the badness is computed based on S and it measures how undesirable the initial approximation is. The higher the value of badness the more undesirable is the approximate solution. Another numerical value called the tolerance is calculated based on a number of factors, often including the initial badness.

A new approximate solution S' , called a neighbour of S, is calculated based on S. The badness of S' , b' , is computed and compared with the tolerance. If b' is better than tolerance, then the algorithm is recursively restarted with S : = S' , and tolerance := decay(tolerance) where decay is a function that lowers the tolerance (representing a rise in water levels). If b' is worse than tolerance, a different neighbour S* of S is chosen and the process repeated. If all the neighbours of S produce approximate solutions beyond tolerance, then the algorithm is terminated and S is put forward as the best approximate solution obtained.

See also

References

  • Gunter Dueck: "New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel", Technical report, IBM Germany, Heidelberg Scientific Center, 1990.
  • Gunter Dueck: "New Optimization Heuristics The Great Deluge Algorithm and the Record-to-Record Travel", Journal of Computational Physics, Volume 104, Issue 1, p. 86-92, 1993


Optimization: Algorithms, methods, and heuristics
Unconstrained nonlinear
Functions
Gradients
Convergence
Quasi–Newton
Other methods
Hessians
Graph of a strictly concave quadratic function with unique maximum.
Optimization computes maxima and minima.
Constrained nonlinear
General
Differentiable
Convex optimization
Convex
minimization
Linear and
quadratic
Interior point
Basis-exchange
Combinatorial
Paradigms
Graph
algorithms
Minimum
spanning tree
Shortest path
Network flows
Metaheuristics
Category:
Great deluge algorithm Add topic