Misplaced Pages

List of dimensionless quantities

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from List of dimensionless numbers)

This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.

Biology and medicine

Name Standard symbol Definition Field of application
Basic reproduction number R 0 {\displaystyle R_{0}} number of infections caused on average by an infectious individual over entire infectious period epidemiology
Body fat percentage total mass of fat divided by total body mass, multiplied by 100 biology
Kt/V Kt/V medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time)
Waist–hip ratio waist circumference divided by hip circumference biology
Waist-to-chest ratio waist circumference divided by chest circumference biology
Waist-to-height ratio waist circumference divided by height biology

Chemistry

Name Standard symbol Definition Named after Field of application
Activity coefficient γ {\displaystyle \gamma } γ = a x {\displaystyle \gamma ={\frac {a}{x}}} chemistry (Proportion of "active" molecules or atoms)
Arrhenius number α {\displaystyle \alpha } α = E a R T {\displaystyle \alpha ={\frac {E_{a}}{RT}}} Svante Arrhenius chemistry (ratio of activation energy to thermal energy)
Atomic weight M chemistry (mass of one atom divided by the atomic mass constant, 1 Da)
Bodenstein number Bo or Bd B o = v L / D = R e S c {\displaystyle \mathrm {Bo} =vL/{\mathcal {D}}=\mathrm {Re} \,\mathrm {Sc} } Max Bodenstein chemistry (residence-time distribution; similar to the axial mass transfer Peclet number)
Damköhler numbers Da D a = k τ {\displaystyle \mathrm {Da} =k\tau } Gerhard Damköhler chemistry (reaction time scales vs. residence time)
Hatta number Ha H a = N A 0 N A 0 p h y s {\displaystyle \mathrm {Ha} ={\frac {N_{\mathrm {A} 0}}{N_{\mathrm {A} 0}^{\mathrm {phys} }}}} Shirôji Hatta (1895–1973) chemical engineering (adsorption enhancement due to chemical reaction)
Jakob number Ja J a = c p ( T s T s a t ) Δ H f {\displaystyle \mathrm {Ja} ={\frac {c_{p}(T_{\mathrm {s} }-T_{\mathrm {sat} })}{\Delta H_{\mathrm {f} }}}} chemistry (ratio of sensible to latent energy absorbed during liquid-vapor phase change)
pH p H {\displaystyle \mathrm {pH} } p H = log 10 ( a H + ) {\displaystyle \mathrm {pH} =-\log _{10}(a_{{\textrm {H}}^{+}})} chemistry (the measure of the acidity or basicity of an aqueous solution)
van 't Hoff factor i i = 1 + α ( n 1 ) {\displaystyle i=1+\alpha (n-1)} Jacobus Henricus van 't Hoff quantitative analysis (Kf and Kb)
Wagner number Wa W a = κ l d η d i {\displaystyle \mathrm {Wa} ={\frac {\kappa }{l}}{\frac {\mathrm {d} \eta }{\mathrm {d} i}}} electrochemistry (ratio of kinetic polarization resistance to solution ohmic resistance in an electrochemical cell)
Weaver flame speed number Wea W e a = w w H 100 {\displaystyle \mathrm {Wea} ={\frac {w}{w_{\mathrm {H} }}}100} combustion (laminar burning velocity relative to hydrogen gas)

Physics

Physical constants

Main article: Dimensionless physical constant § Examples

Fluids and heat transfer

Main article: Dimensionless numbers in fluid mechanics For a more comprehensive list, see List of dimensionless numbers in fluid mechanics.

Solids

Name Standard symbol Definition Named after Field of application
Coefficient of kinetic friction μ k {\displaystyle \mu _{k}} mechanics (friction of solid bodies in translational motion)
Coefficient of static friction μ s {\displaystyle \mu _{s}} mechanics (friction of solid bodies at rest)
Föppl–von Kármán number γ {\displaystyle \gamma } γ = Y r 2 κ {\displaystyle \gamma ={\frac {Yr^{2}}{\kappa }}} August Föppl and Theodore von Kármán virology, solid mechanics (thin-shell buckling)
Rockwell scale Hugh M. (1890–1957) and Stanley P. (1886–1940) Rockwell mechanical hardness (indentation hardness of a material)
Rolling resistance coefficient Crr C r r = F N f {\displaystyle C_{rr}={\frac {F}{N_{f}}}} vehicle dynamics (ratio of force needed for motion of a wheel over the normal force)

Optics

Name Standard symbol Definition Named after Field of application
Abbe number V V = n d 1 n F n C {\displaystyle V={\frac {n_{d}-1}{n_{F}-n_{C}}}} Ernst Abbe optics (dispersion in optical materials)
f-number N N = f D {\displaystyle N={\frac {f}{D}}} optics, photography (ratio of focal length to diameter of aperture)
Fresnel number F F = a 2 L λ {\displaystyle {\mathit {F}}={\frac {a^{2}}{L\lambda }}} Augustin-Jean Fresnel optics (slit diffraction)
Refractive index n n = c v {\displaystyle n={\frac {c}{v}}} electromagnetism, optics (speed of light in vacuum over speed of light in a material)
Transmittance T T = I I 0 {\displaystyle T={\frac {I}{I_{0}}}} optics, spectroscopy (the ratio of the intensities of radiation exiting through and incident on a sample)

Other

Name Standard symbol Definition Named after Field of application
Fine-structure constant α {\displaystyle \alpha } α = e 2 4 π ε 0 c {\displaystyle \alpha ={\frac {e^{2}}{4\pi \varepsilon _{0}\hbar c}}} quantum electrodynamics (QED) (coupling constant characterizing the strength of the electromagnetic interaction)
Havnes parameter P H {\displaystyle P_{H}} P H = Z d n d n i {\displaystyle P_{H}={\frac {Z_{d}n_{d}}{n_{i}}}} O. Havnes In dusty plasma physics, ratio of the total charge Z d {\displaystyle Z_{d}} carried by the dust particles d {\displaystyle d} to the charge carried by the ions i {\displaystyle i} , with n {\displaystyle n} the number density of particles
Helmholtz number H e {\displaystyle He} H e = ω a c 0 = k 0 a {\displaystyle He={\frac {\omega a}{c_{0}}}=k_{0}a} Hermann von Helmholtz The most important parameter in duct acoustics. If ω {\displaystyle \omega } is the dimensional frequency, then k 0 {\displaystyle k_{0}} is the corresponding free field wavenumber and H e {\displaystyle He} is the corresponding dimensionless frequency
Lundquist number S S = μ 0 L V A η {\displaystyle S={\frac {\mu _{0}LV_{A}}{\eta }}} Stig Lundqvist plasma physics (ratio of a resistive time to an Alfvén wave crossing time in a plasma)
Perveance K K = I I 0 2 β 3 γ 3 ( 1 γ 2 f e ) {\displaystyle {K}={\frac {I}{I_{0}}}\,{\frac {2}{{\beta }^{3}{\gamma }^{3}}}(1-\gamma ^{2}f_{e})} charged particle transport (measure of the strength of space charge in a charged particle beam)
Pierce parameter C {\displaystyle C} C 3 = Z c I K 4 V K {\displaystyle C^{3}={\frac {Z_{c}I_{K}}{4V_{K}}}} Traveling wave tube
Beta β {\displaystyle \beta } β = n k B T B 2 / 2 μ 0 {\displaystyle \beta ={\frac {nk_{B}T}{B^{2}/2\mu _{0}}}} Plasma and fusion power. Ratio of plasma thermal pressure to magnetic pressure, controlling the level of turbulence in a magnetised plasma.
Poisson's ratio ν {\displaystyle \nu } ν = d ε t r a n s d ε a x i a l {\displaystyle \nu =-{\frac {\mathrm {d} \varepsilon _{\mathrm {trans} }}{\mathrm {d} \varepsilon _{\mathrm {axial} }}}} elasticity (strain in transverse and longitudinal direction)
Q factor Q Q = 2 π f r Energy Stored Power Loss {\displaystyle Q=2\pi f_{r}{\frac {\text{Energy Stored}}{\text{Power Loss}}}} physics, engineering (Damping ratio of oscillator or resonator; energy stored versus energy lost)
Relative density RD R D = ρ s u b s t a n c e ρ r e f e r e n c e {\displaystyle RD={\frac {\rho _{\mathrm {substance} }}{\rho _{\mathrm {reference} }}}} hydrometers, material comparisons (ratio of density of a material to a reference material—usually water)
Relative permeability μ r {\displaystyle \mu _{r}} μ r = μ μ 0 {\displaystyle \mu _{r}={\frac {\mu }{\mu _{0}}}} magnetostatics (ratio of the permeability of a specific medium to free space)
Relative permittivity ε r {\displaystyle \varepsilon _{r}} ε r = C x C 0 {\displaystyle \varepsilon _{r}={\frac {C_{x}}{C_{0}}}} electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum)
Specific gravity SG (same as Relative density)
Stefan number Ste S t e = c p Δ T L {\displaystyle \mathrm {Ste} ={\frac {c_{p}\Delta T}{L}}} Josef Stefan phase change, thermodynamics (ratio of sensible heat to latent heat)
Strain ϵ {\displaystyle \epsilon } ϵ = F X 1 {\displaystyle \epsilon ={\cfrac {\partial {F}}{\partial {X}}}-1} materials science, elasticity (displacement between particles in the body relative to a reference length)

Mathematics and statistics

Main article: List of mathematical constants

Geography, geology and geophysics

Name Standard symbol Definition Named after Field of application
Albedo α {\displaystyle \alpha } α = ( 1 D ) α ¯ ( θ i ) + D α ¯ ¯ {\displaystyle \alpha =(1-D){\bar {\alpha }}(\theta _{i})+D{\bar {\bar {\alpha }}}} climatology, astronomy (reflectivity of surfaces or bodies)
Dieterich–Ruina–Rice number R u {\displaystyle \mathrm {R_{u}} } R u = W L ( b a ) σ ¯ G {\displaystyle \mathrm {R_{u}} ={\frac {W}{L}}{\frac {(b-a){\bar {\sigma }}}{G}}} James H. Dieterich, Andy Ruina, and James R. Rice mechanics, friction, rheology, geophysics (stiffness ratio for frictional contacts)
Love numbers h, k, l Augustus Edward Hough Love geophysics (solidity of earth and other planets)
Porosity ϕ {\displaystyle \phi } ϕ = V V V T {\displaystyle \phi ={\frac {V_{\mathrm {V} }}{V_{\mathrm {T} }}}} geology, porous media (void fraction of the medium)
Rossby number Ro R o = U L f {\displaystyle \mathrm {Ro} ={\frac {U}{Lf}}} Carl-Gustav Arvid Rossby geophysics (ratio of inertial to Coriolis force)

Sport

Name Standard symbol Definition Field of application
Blondeau number B κ {\displaystyle B_{\kappa }} B κ = t g v f l m f {\displaystyle \mathrm {B_{\kappa }} ={\frac {t_{g}v_{f}}{l_{mf}}}} sport science, team sports
Gain ratio bicycling (system of representing gearing; length traveled over length pedaled)
Goal difference GD Goal difference = goals scored goals conceded {\displaystyle {\text{Goal difference}}={\text{goals scored}}-{\text{goals conceded}}} Association football
Runs Per Wicket Ratio RpW ratio RpW ratio  = runs scored wickets lost ÷ runs conceded wickets taken {\displaystyle {\text{RpW ratio }}={\frac {\text{runs scored}}{\text{wickets lost}}}\div {\frac {\text{runs conceded}}{\text{wickets taken}}}} cricket
Winning percentage Various, e.g. Games won Games played {\displaystyle {\frac {\text{Games won}}{\text{Games played}}}} or Points won Points contested {\displaystyle {\frac {\text{Points won}}{\text{Points contested}}}} Various sports

Other fields

Name Standard symbol Definition Field of application
Capacity factor actual electrical energy output maximum possible electrical energy output {\displaystyle {\frac {\text{actual electrical energy output}}{\text{maximum possible electrical energy output}}}} energy
Cohesion number Coh C o h = 1 ρ g ( Γ 5 E 2 R 8 ) 1 3 {\displaystyle Coh={\frac {1}{\rho g}}\left({\frac {\Gamma ^{5}}{{E^{*}}^{2}{R^{*}}^{8}}}\right)^{\frac {1}{3}}} Chemical engineering, material science, mechanics (A scale to show the energy needed for detaching two solid particles)
Cost of transport COT C O T = E m g d {\displaystyle \mathrm {COT} ={\frac {E}{mgd}}} energy efficiency, economics (ratio of energy input to kinetic motion)
Damping ratio ζ {\displaystyle \zeta } ζ = c 2 k m {\displaystyle \zeta ={\frac {c}{2{\sqrt {km}}}}} mechanics, electrical engineering (the level of damping in a system)
Decibel dB acoustics, electronics, control theory (ratio of two intensities or powers of a wave)
Elasticity
(economics)
E E x , y = ln ( x ) ln ( y ) = x y y x {\displaystyle E_{x,y}={\frac {\partial \ln(x)}{\partial \ln(y)}}={\frac {\partial x}{\partial y}}{\frac {y}{x}}} economics (response of demand or supply to price changes)
Gain electronics (signal output to signal input)
Load factor average load peak load {\displaystyle {\frac {\text{average load}}{\text{peak load}}}} energy
Peel number NP N P = Restoring force Adhesive force {\displaystyle N_{\mathrm {P} }={\frac {\text{Restoring force}}{\text{Adhesive force}}}} coating (adhesion of microstructures with substrate)
Pixel px digital imaging (smallest addressable unit)
Power factor pf p f = P S {\displaystyle pf={\frac {P}{S}}} electrical (real power to apparent power)
Power number Np N p = P ρ n 3 d 5 {\displaystyle N_{p}={P \over \rho n^{3}d^{5}}} fluid mechanics, power consumption by rotary agitators; resistance force versus inertia force)
Prater number β β = Δ H r D T A e C A S λ e T s {\displaystyle \beta ={\frac {-\Delta H_{r}D_{TA}^{e}C_{AS}}{\lambda ^{e}T_{s}}}} reaction engineering (ratio of heat evolution to heat conduction within a catalyst pellet)
Relative density RD R D = ρ s u b s t a n c e ρ r e f e r e n c e {\displaystyle RD={\frac {\rho _{\mathrm {substance} }}{\rho _{\mathrm {reference} }}}} hydrometers, material comparisons (ratio of density of a material to a reference material—usually water)

References

  1. "Table of Dimensionless Numbers" (PDF). Retrieved 2009-11-05.
  2. Becker, A.; Hüttinger, K. J. (1998). "Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime". Carbon. 36 (3): 177. doi:10.1016/S0008-6223(97)00175-9.
  3. Incropera, Frank P. (2007). Fundamentals of heat and mass transfer. John Wiley & Sons, Inc. p. 376. ISBN 9780470055540.
  4. Popov, Konstantin I.; Djokić, Stojan S.; Grgur, Branimir N. (2002). Fundamental Aspects of Electrometallurgy. Boston, MA: Springer. pp. 101–102. ISBN 978-0-306-47564-1.
  5. Kuneš, J. (2012). "Technology and Mechanical Engineering". Dimensionless Physical Quantities in Science and Engineering. pp. 353–390. doi:10.1016/B978-0-12-416013-2.00008-7. ISBN 978-0-12-416013-2.
  6. Fresnel number Archived 2011-10-01 at the Wayback Machine
  7. S.W. RIENSTRA, 2015, Fundamentals of Duct Acoustics, Von Karman Institute Lecture Notes
  8. Barbot, S. (2019). "Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault". Tectonophysics. 768: 228171. Bibcode:2019Tectp.76828171B. doi:10.1016/j.tecto.2019.228171.
  9. Blondeau, J. (2021). "The influence of field size, goal size and number of players on the average number of goals scored per game in variants of football and hockey: the Pi-theorem applied to team sports". Journal of Quantitative Analysis in Sports. 17 (2): 145–154. doi:10.1515/jqas-2020-0009. S2CID 224929098.
  10. Gain Ratio – Sheldon Brown
  11. "goal difference". Cambridge Dictionary.
  12. "World Test Championship Playing Conditions: What's different?" (PDF). International Cricket Council. Retrieved 11 August 2021.
  13. Behjani, Mohammadreza Alizadeh; Rahmanian, Nejat; Ghani, Nur Fardina bt Abdul; Hassanpour, Ali (2017). "An investigation on process of seeded granulation in a continuous drum granulator using DEM" (PDF). Advanced Powder Technology. 28 (10): 2456–2464. doi:10.1016/j.apt.2017.02.011.
  14. Alizadeh Behjani, Mohammadreza; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew (2017). "Numerical Analysis of the Effect of Particle Shape and Adhesion on the Segregation of Powder Mixtures". EPJ Web of Conferences. 140: 06024. Bibcode:2017EPJWC.14006024A. doi:10.1051/epjconf/201714006024. ISSN 2100-014X.
  15. Van Spengen, W. M.; Puers, R.; De Wolf, I. (2003). "The prediction of stiction failures in MEMS". IEEE Transactions on Device and Materials Reliability. 3 (4): 167. doi:10.1109/TDMR.2003.820295.
  16. Davis, Mark E.; Davis, Robert J. (2012). Fundamentals of Chemical Reaction Engineering. Dover. p. 215. ISBN 978-0-486-48855-4.

Bibliography

Category:
List of dimensionless quantities Add topic