Names | |
---|---|
Preferred IUPAC name 1-Phenylethan-1-amine | |
Other names
| |
Identifiers | |
CAS Number | |
3D model (JSmol) |
|
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.009.588 |
KEGG | |
PubChem CID | |
UNII |
|
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C8H11N |
Molar mass | 121.183 g·mol |
Density | 0.94 g/mL |
Melting point | -65 C |
Boiling point | 187 °C (369 °F; 460 K) |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | Corrosive |
Related compounds | |
Related stereoisomers | (R)-(+)- (CAS ) (S)-(−)- (CAS ) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
1-Phenylethylamine is the organic compound with the formula C6H5CH(NH2)CH3. This primary amine is a colorless liquid is often used in chiral resolutions. Like benzylamine, it is relatively basic and forms stable ammonium salts and imines.
Preparation and optical resolution
1-Phenylethylamine may be prepared by the reductive amination of acetophenone:
- C6H5C(O)CH3 + NH3 + H2 → C6H5CH(NH2)CH3 + H2O
The Leuckart reaction, using ammonium formate, is another method for this transformation.
L-malic acid is used to resolve 1-Phenylethylamine, a versatile resolving agent in its own right. The dextrorotatory enantiomer crystallizes with the malate, leaving the levorotatory form in solution.
See also
References
- John C. Robinson, Jr. and H. R. Snyder (1943). "α-Phenylethylamine". Organic Syntheses. 23: 68. doi:10.15227/orgsyn.023.0068.
- Mann, F. G.; Saunders, B. C. (1960). Practical Organic Chemistry, 4th Ed. London: Longman. pp. 223–224. ISBN 9780582444072.
- A. W. Ingersoll (1937). "d- and l-α-Phenylethylamine". Organic Syntheses. 17: 80. doi:10.15227/orgsyn.017.0080.