Misplaced Pages

Moessner's theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Theorem in number theory

In number theory, Moessner's theorem or Moessner's magic is related to an arithmetical algorithm to produce an infinite sequence of the exponents of positive integers 1 n , 2 n , 3 n , 4 n ,   , {\displaystyle 1^{n},2^{n},3^{n},4^{n},\cdots ~,} with n 1   , {\displaystyle n\geq 1~,} by recursively manipulating the sequence of integers algebraically. The algorithm was first published by Alfred Moessner in 1951; the first proof of its validity was given by Oskar Perron that same year.

For example, for n = 2 {\displaystyle n=2} , one can remove every even number, resulting in ( 1 , 3 , 5 , 7 ) {\displaystyle (1,3,5,7\cdots )} , and then add each odd number to the sum of all previous elements, providing ( 1 , 4 , 9 , 16 , ) = ( 1 2 , 2 2 , 3 2 , 4 2 ) {\displaystyle (1,4,9,16,\cdots )=(1^{2},2^{2},3^{2},4^{2}\cdots )} .

Construction

Write down every positive integer and remove every n {\displaystyle n} -th element, with n {\displaystyle n} a positive integer. Build a new sequence of partial sums with the remaining numbers. Continue by removing every ( n 1 ) {\displaystyle (n-1)} -st element in the new sequence and producing a new sequence of partial sums. For the sequence k {\displaystyle k} , remove the ( n k + 1 ) {\displaystyle (n-k+1)} -st elements and produce a new sequence of partial sums.

The procedure stops at the n {\displaystyle n} -th sequence. The remaining sequence will correspond to 1 n , 2 n , 3 n , 4 n   . {\displaystyle 1^{n},2^{n},3^{n},4^{n}\cdots ~.}

Example

The initial sequence is the sequence of positive integers,

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16   . {\displaystyle 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\cdots ~.}

For n = 4 {\displaystyle n=4} , we remove every fourth number from the sequence of integers and add up each element to the sum of the previous elements

1 , 2 , 3 , 5 , 6 , 7 , 9 , 10 , 11 , 13 , 14 , 15 1 , 3 , 6 , 11 , 17 , 24 , 33 , 43 , 54 , 67 , 81 , 96 {\displaystyle 1,2,3,5,6,7,9,10,11,13,14,15\cdots \to 1,3,6,11,17,24,33,43,54,67,81,96\cdots }

Now we remove every third element and continue to add up the partial sums

1 , 3 , 11 , 17 , 33 , 43 , 67 , 81 1 , 4 , 15 , 32 , 65 , 108 , 175 , 256 {\displaystyle 1,3,11,17,33,43,67,81\cdots \to 1,4,15,32,65,108,175,256\cdots }

Remove every second element and continue to add up the partial sums

1 , 15 , 65 , 175 1 , 16 , 81 , 256 {\displaystyle 1,15,65,175\cdots \to 1,16,81,256\cdots } ,

which recovers 1 4 , 2 4 , 3 4 , 4 4 , {\displaystyle 1^{4},2^{4},3^{4},4^{4},\cdots } .

Variants

If the triangular numbers are removed instead, a similar procedure leads to the sequence of factorials 1 ! , 2 ! , 3 ! , 4 ! ,   . {\displaystyle 1!,2!,3!,4!,\cdots ~.}

References

  1. ^ Conway, John H.; Guy, Richard (2012-12-06). The Book of Numbers. Springer Science & Business Media. ISBN 978-1-4612-4072-3.
  2. Moessner, Alfred (1951). "Eine Bemerkung über die Potenzen der natürlichen Zahlen" [A note on the powers of the natural numbers]. Sitzungsberichte (in German). 3.
  3. Oskar, Perron (1951). "Beweis des Moessnerschen Satzes" [Proof of Moessner's theorem]. Sitzungsberichte (in German). 4.
  4. ^ Kozen, Dexter; Silva, Alexandra (2013). "On Moessner's Theorem". The American Mathematical Monthly. 120 (2): 131. doi:10.4169/amer.math.monthly.120.02.131. hdl:2066/111198. S2CID 8799795.
  5. Weisstein, Eric W. "Moessner's Theorem". mathworld.wolfram.com. Retrieved 2021-07-20.

External links

Category: