Misplaced Pages

Isotopes of molybdenum

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Molybdenum-98) "Mo-99" redirects here. For MO99 Freon mix R438A, see refrigerant.

Isotopes of molybdenum (42Mo)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Mo 14.7% stable
Mo synth 4839 y ε Nb
Mo 9.19% stable
Mo 15.9% stable
Mo 16.7% stable
Mo 9.58% stable
Mo 24.3% stable
Mo synth 65.94 h β Tc
γ
Mo 9.74% 7.07×10 y ββ Ru
Standard atomic weight Ar°(Mo)

Molybdenum (42Mo) has 39 known isotopes, ranging in atomic mass from 81 to 119, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.

Molybdenum-100, with a half-life of 7.07×10 years, is the only naturally occurring radioisotope. It undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Mo 42 39 80.96623(54)# 1# ms
β? Nb 5/2+#
β, p? Zr
Mo 42 40 81.95666(43)# 30# ms
β? Nb 0+
β, p? Zr
Mo 42 41 82.95025(43)# 23(19) ms β Nb 3/2−#
β, p? Zr
Mo 42 42 83.94185(32)# 2.3(3) s β Nb 0+
β, p? Zr
Mo 42 43 84.938261(17) 3.2(2) s β (99.86%) Nb (1/2+)
β, p (0.14%) Zr
Mo 42 44 85.931174(3) 19.1(3) s β Nb 0+
Mo 42 45 86.928196(3) 14.1(3) s β (85%) Nb 7/2+#
β, p (15%) Zr
Mo 42 46 87.921968(4) 8.0(2) min β Nb 0+
Mo 42 47 88.919468(4) 2.11(10) min β Nb (9/2+)
Mo 387.5(2) keV 190(15) ms IT Mo (1/2−)
Mo 42 48 89.913931(4) 5.56(9) h β Nb 0+
Mo 2874.73(15) keV 1.14(5) μs IT Mo 8+
Mo 42 49 90.911745(7) 15.49(1) min β Nb 9/2+
Mo 653.01(9) keV 64.6(6) s IT (50.0%) Mo 1/2−
β (50.0%) Nb
Mo 42 50 91.90680715(17) Observationally Stable 0+ 0.14649(106)
Mo 2760.52(14) keV 190(3) ns IT Mo 8+
Mo 42 51 92.90680877(19) 4839(63) y EC (95.7%) Nb 5/2+
EC (4.3%) Nb
Mo 2424.95(4) keV 6.85(7) h IT (99.88%) Mo 21/2+
β (0.12%) Nb
Mo 9695(17) keV 1.8(10) μs IT Mo (39/2−)
Mo 42 52 93.90508359(15) Stable 0+ 0.09187(33)
Mo 42 53 94.90583744(13) Stable 5/2+ 0.15873(30)
Mo 42 54 95.90467477(13) Stable 0+ 0.16673(8)
Mo 42 55 96.90601690(18) Stable 5/2+ 0.09582(15)
Mo 42 56 97.90540361(19) Observationally Stable 0+ 0.24292(80)
Mo 42 57 98.90770730(25) 65.932(5) h β Tc 1/2+
Mo 97.785(3) keV 15.5(2) μs IT Mo 5/2+
Mo 684.10(19) keV 760(60) ns IT Mo 11/2−
Mo 42 58 99.9074680(3) 7.07(14)×10 y ββ Ru 0+ 0.09744(65)
Mo 42 59 100.9103376(3) 14.61(3) min β Tc 1/2+
Mo 13.497(9) keV 226(7) ns IT Mo 3/2+
Mo 57.015(11) keV 133(70) ns IT Mo 5/2+
Mo 42 60 101.910294(9) 11.3(2) min β Tc 0+
Mo 42 61 102.913092(10) 67.5(15) s β Tc 3/2+
Mo 42 62 103.913747(10) 60(2) s β Tc 0+
Mo 42 63 104.9169798(23) 36.3(8) s β Tc (5/2−)
Mo 42 64 105.9182732(98) 8.73(12) s β Tc 0+
Mo 42 65 106.9221198(99) 3.5(5) s β Tc (1/2+)
Mo 65.4(2) keV 445(21) ns IT Mo (5/2+)
Mo 42 66 107.9240475(99) 1.105(10) s β (>99.5%) Tc 0+
β, n (<0.5%) Tc
Mo 42 67 108.928438(12) 700(14) ms β (98.7%) Tc (1/2+)
β, n (1.3%) Tc
Mo 69.7(5) keV 210(60) ns IT Mo 5/2+#
Mo 42 68 109.930718(26) 292(7) ms β (98.0%) Tc 0+
β, n (2.0%) Tc
Mo 42 69 110.935652(14) 193.6(44) ms β (>88%) Tc 1/2+#
β, n (<12%) Tc
Mo 100(50)# keV ~200 ms β Tc 7/2−#
β, n? Tc
Mo 42 70 111.93829(22)# 125(5) ms β Tc 0+
β, n? Tc
Mo 42 71 112.94348(32)# 80(2) ms β Tc 5/2+#
β, n? Tc
Mo 42 72 113.94667(32)# 58(2) ms β Tc 0+
β, n? Tc
Mo 42 73 114.95217(43)# 45.5(20) ms β Tc 3/2+#
β, n? Tc
β, 2n? Tc
Mo 42 74 115.95576(54)# 32(4) ms β Tc 0+
β, n? Tc
β, 2n? Tc
Mo 42 75 116.96169(54)# 22(5) ms β Tc 3/2+#
β, n? Tc
β, 2n? Tc
Mo 42 76 117.96525(54)# 21(6) ms β Tc 0+
β, n? Tc
β, 2n? Tc
Mo 42 77 118.97147(32)# 12# ms
β? Tc 3/2+#
β, n? Tc
β, 2n? Tc
This table header & footer:
  1. Mb – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Believed to decay by ββ to Zr with a half-life over 1.9×10 y
  10. ^ Fission product
  11. Believed to decay by ββ to Ru with a half-life of over 1×10 years
  12. Used to produce the medically useful radioisotope technetium-99m
  13. Primordial radionuclide

Molybdenum-99

Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction. It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in approximately 40 million medical procedures annually. A common misunderstanding or misnomer is that Mo is used in these diagnostic medical scans, when actually it has no role in the imaging agent or the scan itself. In fact, Mo co-eluted with the Tc (also known as breakthrough) is considered a contaminant and is minimised to adhere to the appropriate USP (or equivalent) regulations and standards. The IAEA recommends that Mo concentrations exceeding more than 0.15 μCi/mCi Tc or 0.015% should not be administered for usage in humans. Typically, quantification of Mo breakthrough is performed for every elution when using a Mo/Tc generator during QA-QC testing of the final product.

There are alternative routes for generating Mo that do not require a fissionable target, such as high or low enriched uranium (i.e., HEU or LEU). Some of these include accelerator-based methods, such as proton bombardment or photoneutron reactions on enriched Mo targets. Historically, Mo generated by neutron capture on natural isotopic molybdenum or enriched Mo targets was used for the development of commercial Mo/Tc generators. The neutron-capture process was eventually superseded by fission-based Mo that could be generated with much higher specific activities. Implementing feed-stocks of high specific activity Mo solutions thus allowed for higher quality production and better separations of Tc from Mo on small alumina column using chromatography. Employing low-specific activity Mo under similar conditions is particularly problematic in that either higher Mo loading capacities or larger columns are required for accommodating equivalent amounts of Mo. Chemically speaking, this phenomenon occurs due to other Mo isotopes present aside from Mo that compete for surface site interactions on the column substrate. In turn, low-specific activity Mo usually requires much larger column sizes and longer separation times, and usually yields Tc accompanied by unsatisfactory amounts of the parent radioisotope when using γ-alumina as the column substrate. Ultimately, the inferior end-product Tc generated under these conditions makes it essentially incompatible with the commercial supply-chain.

In the last decade, cooperative agreements between the US government and private capital entities have resurrected neutron capture production for commercially distributed Mo/Tc in the United States of America. The return to neutron-capture-based Mo has also been accompanied by the implementation of novel separation methods that allow for low-specific activity Mo to be utilized.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the Mo half-life". Scientific Reports. 11 (1). doi:10.1038/s41598-021-99253-5. ISSN 2045-2322. PMC 8492754. PMID 34611245.
  3. "Standard Atomic Weights: Molybdenum". CIAAW. 2013.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. Section 11. ISBN 978-0-8493-0487-3.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
  8. Frank N. Von Hippel; Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes". Science & Global Security. 14 (2 & 3): 151–162. Bibcode:2006S&GS...14..151V. doi:10.1080/08929880600993071. S2CID 122507063.
  9. Ibrahim I, Zulkifli H, Bohari Y, Zakaria I, Wan Hamirul BWK. Minimizing Molybdenum-99 Contamination In Technetium-99m Pertechnetate From The Elution Of Mo/Tc Generator (PDF) (Report).
  10. Richards, P. (1989). Technetium-99m: The early days. 3rd International Symposium on Technetium in Chemistry and Nuclear Medicine, Padova, Italy, 5-8 Sep 1989. OSTI 5612212.
  11. Richards, P. (1965-10-14). The Technetium-99m Generator (Report). doi:10.2172/4589063. OSTI 4589063.
  12. "Emerging leader with new solutions in the field of nuclear medicine technology". NorthStar Medical Radioisotopes, LLC. Retrieved 2020-01-23.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: