Misplaced Pages

Peter H. Raven

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from P.H.Raven) American botanist

Peter Raven
Peter Raven, after receiving the Addison Emery Verrill Medal
BornPeter Hamilton Raven
June 13, 1936 (1936-06-13) (age 88)
Shanghai, China
NationalityAmerican
Alma materUniversity of California, Berkeley,
University of California, Los Angeles
Spouses
Sally Barrett ​ ​(m. 1958; died 1968)
Tamra Engelhorn ​ ​(m. 1968; div. 1995)
Kathryn Fish ​ ​(m. 1996; div. 2000)
Patricia Duncan ​(m. 2001)
Children4
AwardsSee Awards and honors
Scientific career
FieldsBotany, Evolutionary biology, Biodiversity
InstitutionsStanford University,
Missouri Botanical Garden
Washington University in St. Louis
Doctoral studentsDennis E. Breedlove
Warren L. Wagner

Peter Hamilton Raven (born June 13, 1936) is an American botanist and environmentalist, notable as the longtime director, now President Emeritus, of the Missouri Botanical Garden.

Early life

On June 13, 1936, Raven was born in Shanghai, China, to American parents, Walter Francis Raven and Isabelle Marion Breen. His father's uncle Frank Jay Raven was, for a time, one of the wealthiest Americans in China but was later jailed in a banking scandal. That incident and Japanese aggression in China led the Raven family to return to San Francisco, California, in the late 1930s.

After becoming a member of the California Academy of Sciences while still a youth, Raven went on to graduate with a BSc in biology from the University of California, Berkeley, in 1957 and a Ph.D. in botany from the University of California, Los Angeles, in 1960.

Career

After teaching at Stanford University, Raven went on to become Director of the Missouri Botanical Garden in 1971. In 2006, his position was renamed President and Director. Raven announced his plans to retire in 2011, to coincide with his 75th birthday and his 40th year at the garden. Peter Wyse Jackson was appointed as Raven's successor at the Missouri Botanical Garden in September 2010.

Raven is possibly best known for his work "Butterflies and Plants: A Study in Coevolution", published in the journal Evolution in 1964, which he coauthored with Paul R. Ehrlich. Since then he has authored numerous scientific and popular papers, many on the evening primrose family, Onagraceae. Raven is also an author of the widely used textbook Biology of Plants, now in its eighth edition, coauthored with Ray F. Evert and Susan E. Eichhorn (both of University of Wisconsin, Madison).

He is a frequent speaker on the need for biodiversity and species conservation.

In 2000, the American Society of Plant Taxonomists established the Peter Raven Award in his honor to be conferred to authors with outstanding contributions to plant taxonomy and "for exceptional efforts at outreach to non-scientists".

He serves on the advisory council of CRDF Global. He served on the board of trustees for Science Service, now known as Society for Science & the Public, from 1993 to 1996.

Research

Raven has published more than 700 articles, books, and monographs covering topics in Evolution, Taxonomy and Systematics, Biogeography, Coevolution, Plant Conservation, Ethnobotany, and Public Policy, including several text books.

During his early years he was associated with and led Sierra Club outings for several weeks at a time, after which he published "Base Camp Reports." Published from 1950 to 1956, these reports covered a wide range of subjects, including plant lists, insects, and ecology. His first such report, at the age of 14, summarized 506 plant collections representing 337 species collected in the Sierra Nevada Mountains in Inyo and Fresno Counties. G. Ledyard Stebbins was a counselor on this particular trip, identified by Raven as Prof. G. L. "Led" Stebbins.

During this time he also published on new weed species and other plants found in and around San Francisco as well as the Sierra Nevada Mountains.

In 1950 Raven, at the age of 14, had collected a plant called C. rubicunda. In the early 1950s, in the course of revising the genus Clarkia Harlan Lewis and his wife Margaret Lewis discovered the herbarium specimen collected by Raven. They visited him in 1952 when he was 16, and wanted to know where the collection was made. Lewis eventually located the new species, and in 1958 Lewis and Raven published a botanical description of this plant, called C. franciscana, which was morphologically very closely related to C. rubicunda and C. amoena.

Evolution

While a graduate student at the University of California, Los Angeles, Raven and Harlan Lewis published a major paper in 1958 on the evolution of C. franciscana, and generalized to what was by then a general a pattern of speciation in Clarkia. They concluded that C. franciscana had evolved from Clarkia rubicunda; and they asserted that C. franciscana's origin mirrored a recurring theme in Clarkia of a derived species showing a close morphological similarity to a parental species, the derived species being geographically proximal, but differing from the parent by chromosomal differences and showing interspecific sterility. Further, they hypothesized that such speciation in Clarkia was rapid, and perhaps occurred within the last 12,000 years.

Additionally, they hypothesized that this rapid mode of speciation seen in Clarkia was analogous to a mode of speciation known as quantum evolution.

Following his early publication in 1958 on evolution of C. franciscana, Raven went on to publish many papers on evolutionary topics. While at Stanford University, with Paul R. Ehrlich, he coined the term coevolution after a 1964 review of butterflies and their food plants.

In a 1969 paper Ehrlich and Raven were also critical of the idea that the definition of species as advocated by Ernst Mayr, Theodosius Dobzhansky, and G. Ledyard Stebbins had very little meaning for plants.

In 1978 Sussman and Raven advanced the idea that nonflying mammals, such as primates and marsupials, could have been significant pollinators but were outcompeted by nectar-feeding birds and bats. Any coevolved relationships between flowering plant species and non-flying mammal pollinators that persist at the present would appear to be "living fossils, which have a great deal to tell us about the evolution of both the mammals, including some of our antecedents, and of the flowering plants."

Raven wrote a review of the plant population data as of 1979, and identified several themes that he felt had potential for future research, including the above theme of the species problem. He went on to assert that developmental biology would be more important in the future He advocated another theme, that being that funding should be provided for study on a few species rather than spread amongst many in order to solve population biology problems:

In 1980 Raven continued discussing problems associated with defining species in plants. He discussed the widespread ability of plant species to hybridize, especially in perennial plants, and the historical observations of such back to 1717. He used as examples of perennial plants in the genera Epilobium, Scaevola, Bidens, and Ceanothus as examples of plants that appeared to use hybridization as a means to adapting to new environments. He stated "If the hybrids are particularly favored in specific ecological situations, asexual reproduction, polyploidy, or simply autogamy may favor the perpetuation of specific genotypes through a narrowing of the spectrum of genetic recombination characteristic of the population. No general conclusions about the most appropriate way to treat these populations taxonomically appear to be possible." In annual plants, using examples from Clarkia, he asserted that several species of Clarkia often occur sympatrically, yet hybrids are very rare in the wild," and that much of the sterility is due to chromosomal repatterning between species."

In 1980 Raven and coauthors reviewed the literature concerning fungal symbiosis in vascular plants. They reviewed two kinds of fungal-plant associations: ectomycorrhizal and endomycorrhizal. They reported that endomycorrhizal fungi, which penetrate plant cells, are found in 80% of all vascular plants, including ferns, gymnosperms, and angiosperms, and are found in forests of high species richness. On the other hand, ectomycorrhizal fungi, which do not penetrate plant cells, occur in forests of low species richness, are usually in temperate forests, or infertile soils of the tropics. Further, they hypothesized that ectomycorrhizal forests have expanded through the Middle Cretaceous at the expense of endomycorrhizal forests.

Raven's Ph.D. thesis was on a genus within the Onagraceae, and his interest on the evolution of plants within this family as well as the Myrtales runs through his entire career. In 1988 he published a review of the Onagraceae, covering its taxonomy, evolution, cytogenetics, anatomy, breeding systems, and geographic distribution. He asserted that the family was the best known plant family of its size, and proposed that further studies of the family would be useful in understanding of "variation and evolution of plants in the future."

Biogeography

Raven showed an early interest in plant disjunctions prior to the wide acceptance of plate tectonic theory of the late 1960s, and was an early adopter of plate tectonics in explaining plant disjunctions by the early 1970s.

The Nothofagus plant genus illustrates Gondwanan distribution, having descended from the supercontinent and existing in present-day Australia, New Zealand, New Caledonia, and the Southern Cone. Fossils have also recently been found in Antarctica.

In 1963 Raven published a review of amphitropical distributions of plant species in North and South America. He divided species into three groups: biopolar or high-latitude species, temperate species, and desert species.

In 1974, with Daniel I. Axelrod, Raven published an extensive article on plant and animal biogeography in the context of plate tectonics. They stated that the new plate tectonic theory "did not require any new modifications of previously established major principles of evolution...however there were new principles of biogeography..."

In 1978, again with Axelrod, they published on the origin and complexity of Californian flora. They reviewed that the flora of California consisted of "northern, temperate elements and xeric, southern elements, and is characterized by a high degree of endemism." They proposed that the reasons for the large number of species in the state as well as the endemics is due to the favorable climate that has prevailed in California for most of the Tertiary, as well as the recent elevation of the Sierra Nevada and other ranges, together with: "The concomitant development of a cold off-shore current which ultimately resulted in the development of a mediterranean, summer-dry climate during the past million years...The endemics of California are a mixture of relicts and newly produced species...and it is the latter that have contributed most to the size of the flora and to the high proportion of endemism in it."

Raven and Axelrod wrote a paper in 1985 on the origin of the Cordilleran flora, a region bounded by the east slope of the Sierra Nevada and Transverse Ranges and Peninsular Ranges of California to the eastern front of the Rocky Mountains, north to the Snake River Plain-western Wyoming, and south to central Arizona-New Mexico.

In 1996 Raven, Axelrod, and Al-Shehbaz wrote a paper on the history of the modern flora of China, Europe, and the continental United States. They said that the three regions have approximately the same geographic area, yet China has two times the number of species as the United States, and three times as many as Europe. They asserted that all three regions had essentially the same flora as of 15 million years ago, but China came to possess the most species because of three reasons. First, China has a tropical rain forest. Second, there is an unbroken gradient of vegetation from the tropical rain forest to "boreal coniferous forests that has persisted and afforded habitats characterized by equable climates during the last 15 million years, when massive extinctions were taking place elsewhere in the Northern Hemisphere...such continuity is interrupted in North America by the Gulf of Mexico and in Europe by the Alps, the Mediterranean, and the Sahara Desert." The third reason was due to the impact of the Indian subcontinent with Asia starting 50 million years ago, making a "highly dissected, elevated geography."

Taxonomy/Systematics/Floras

Raven has produced a wide variety of works in the area of plant systematics. Most of them are related to the plant family Onagraceae. In 1969 he published a 235-page report on Camissonia; In 1976 he, along with his wife at the time Tamara Engelhorn, published a 321-page monograph on Epilobium in Australasia; an embryological analysis of species in the Myrtales; In 1992 a 209-page monograph on the systematics of Epilobium in China; in 1997 a 234-page monograph on the systematics of Oenothera; and in 2007 a 240-page monograph on a reclassification of the Onagraceae. And in 1981 he published a 1,049 page monograph on the systematics of Legumes.

He has also published a number of books (Floras) devoted to the systematics of plants found in particular regions. These include a 1966 book on the native shrubs of Southern California; a 1966 flora on the Santa Monica Mountains in California; and, with various editors and authors, an ongoing 33 volume set (to date) on the flora of China, organized by plant family.

Ethnobotany

Raven (along with Dennis E. Breedlove) was a collaborator on a team led by Brent Berlin that published a seminal work on the classification of plants by the Tzeltal Mayan-speaking people of Highland Chiapas. They concluded that plant, as well as animal, descriptions could be grouped into five different hierarchical "taxonomic ethnobiological categories"; these included 1.) "unique beginner," such as plants and animals, 2.) "life form", such as tree, vine, bird, grass, mammal, etc.; 3.) the largest category, consisting usually of ~500 taxa, is "generic", and consists of names such as oak, pine, catfish, perch, and robin. Further, some "generics" were not included with in the classification of "life forms", and were called "aberrant". These included names such as cactus, bamboo, pineapple, platypus, etc., and were often of economic value—Agave, bean, and corn as examples. Two other taxa were called "specific" and "varietal," and were generally less numerous. Examples of "specific" include blue spruce, white fir, and post oak, and examples of "varietal" included baby beans, button beans, etc.

Berlin, Breedlove and Raven later extended their analysis of plants and animals to other indigenous peoples including the Hanunoo speaking people of the island of Mindoro, Philippines; the Karam of Papua New Guinea; the Cantonese speaking boat people of Castle Peak Bay, Hong Kong; the Navajo of the Southwestern United States; the Fore people of Papua New Guinea; the Guaraní people of South America; and the Nahuatl speaking people of Mexico, and concluded that their five to six taxonomic ethnobiological categories were generalizable.

Awards and honors

The standard author abbreviation P.H.Raven is used to indicate this person as the author when citing a botanical name.

Works

  • Paul R. Ehrlich and Peter H. Raven (1964), "Butterflies and Plants: A Study in Coevolution", Evolution, 18: 586–608.
  • Peter H. Raven and Helena Curtis (1970), Biology of Plants, New York: Worth Publishing.

References

  1. "President Emeritus". www.missouribotanicalgarden.org. Retrieved 10 August 2019.
  2. "Royal Patrons and Honorary Fellows". The Linnean Society of London. Archived from the original on 14 July 2014. Retrieved 25 July 2014.
  3. Correspondence, Special; TIMES, THE NEW YORK (2 February 1936). "CONVICTED BANKER WAS MYTH IN CHINA; F.J. Raven Rose Spectacularly in Shanghai to Become a Financial Power. BEGAN WORK AS SURVEYOR He Branched Off Into Realty, Banking and Trust Business -- Then Came Collapse". The New York Times. ISSN 0362-4331. Retrieved 2 October 2021.
  4. "The Frank Jay Raven Story, an Ebook by Shanghai.Manholes". Smashwords. Retrieved 2 October 2021.
  5. ^ Raven, Peter H. "Publications of Peter H. Raven" (PDF). Discoverlife.org.
  6. Raven, Peter H. (1950). "Base Camp Botany". Sierra Club: 1–19.
  7. Raven, Peter H. (1952). "Parsley for Marin County". Leafl. West. Bot. 6: 204.
  8. Raven, Peter H. (1952). "Plant notes from San Francisco, California". Leafl. West. Bot. 6: 208–211.
  9. Raven, Peter H. (1954). "New weeds for the Sierra Nevada, California". Leafl. West. Bot. 7: 151.
  10. Raven, Peter H. (1955). "A range extension for Allocarya cusickii in California". Leafl. West. Bot. 7: 255.
  11. Raven, Peter H. (1956). "The grasses of San Francisco, California". Leafl. West. Bot. 8: 198–200.
  12. ^ Newbold, Heather, ed. (2000). Life Stories: World-renowned scientists reflect on their lives and the future of life on earth. Berkeley and Los Angeles, California: University of California Press. pp. 30–31.
  13. Lewis, Harlan; Raven, Peter (1958). "Clarkia franciscana, a new species from central California". Brittonia. 10 (1): 7–13. Bibcode:1958Britt..10....7L. doi:10.2307/2804688. JSTOR 2804688. S2CID 19700807.
  14. Lewis, Harlan; Raven, Peter H. (1958). "Rapid Evolution in Clarkia". Evolution. 12 (3): 319–336. doi:10.1111/j.1558-5646.1958.tb02962.x.
  15. Ehrlich, Paul R.; Raven, Peter (1964). "Butterflies and Plants: A study in Coevolution". Evolution. 18 (4): 586–608. doi:10.2307/2406212. JSTOR 2406212.
  16. Ehrlich, Paul R.; Raven, Peter H. (1969). "Differentiation of Populations". Science. 165 (3899): 1228–1232. Bibcode:1969Sci...165.1228E. doi:10.1126/science.165.3899.1228. PMID 5803535. S2CID 206567035.
  17. Sussman, Robert W.; Raven, Peter H. (1978). "Pollinatin by Lemurs and Marsupials: An Archaic Coevolutionary System". Science. 200 (4343): 731–736. Bibcode:1978Sci...200..731S. doi:10.1126/science.200.4343.731. PMID 17743224. S2CID 28858423.
  18. ^ Raven, Peter H. (1979). Future Directions in Plant Population Biology. In: Topics in Plant Population Biology. O. T. Solbrig, S. Jain, G. B. Johnson, and P. H. Raven, (eds). New York: Columbia University Press. pp. 461–481.
  19. Raven, Peter H. (1980). "Hybridization and the Nature of Species in Higher Plants". Canadian Botanical Association Bulletin. 13 (1): 3–10.
  20. Malloch, D. W.; Pirozynski, K. A.; Raven, P. H. (1980). "Ecological and Evolutionary Significance of mycorrhizal Symbioses in Vascular Plants (A Review)". Proc. Natl. Acad. Sci. 77 (4): 2113–2118. Bibcode:1980PNAS...77.2113M. doi:10.1073/pnas.77.4.2113. PMC 348662. PMID 16592806.
  21. Raven, Peter H. (1988). Onagraceae as a Model of Plant Evolution. In: Plant Evolutionary Biology. Leslie Gottlieb and Subodh K. Jain, eds. London, New York: Chapman and Hall. pp. 85–107.
  22. ^ Raven, Peter H. (1963). "Amphitropical Relationships in the Floras of North and South America". Quarterly Review of Biology. 38 (2): 151–177. doi:10.1086/403797. S2CID 85310607.
  23. Raven, Peter H. (1972). "Plant Species Disjunctions: A Summary". Annals of the Missouri Botanical Garden. 59 (2): 234–246. doi:10.2307/2394756. JSTOR 2394756.
  24. HaoMin, Li; ZheKun, Zhou (1 September 2007). "Fossil Nothofagaceous Leaves from the Eocene of Western Antarctica and their Bearing on the Origin, Dispersal and Systematics of Nothofagus" (PDF). Science in China Series D: Earth Sciences. 50 (10): 1525–1535. Bibcode:2007ScChD..50.1525H. doi:10.1007/s11430-007-0102-0. S2CID 130395392. Retrieved 10 September 2017.
  25. Raven, Peter H.; Axelrod, Daniel I. (1974). "Angiosperm Biogeography and Past Continental Movements". Annals of the Missouri Botanical Garden. 61 (3): 539–673. doi:10.2307/2395021. JSTOR 2395021.
  26. Raven, Peter H.; Axelrod, Daniel I. (1978). "Origin and Relationships of the Californian Flora". Univ. Of California. Publ. Bot. 72: 1–134.
  27. Axelrod, Daniel I.; Raven, Peter H. (1985). "Origins of the Cordilleran Flora". Journal of Biogeography. 12 (1): 21–47. Bibcode:1985JBiog..12...21A. doi:10.2307/2845027. JSTOR 2845027.
  28. Axelrod, Daniel I.; Al-Shehbaz, Ihsan; Raven, Peter H. (1996). "History of the Modern Flora of China". Proceedings of the IFCD: 43–55.
  29. Raven, P. H. (1969). "A revision of the genus Camissonia (Onagraceae)". Contrib. U.S. Natl. Herb. 37: 161–396.
  30. Raven, P. H.; Raven, T. E. (1976). "The Genus Epilobium (Onagraceae) in Australasia: A Systematic and Evolutionary Study". New Zealand Department of Scientific and Industrial Research Bulletin. 216: 321.
  31. Tobe, H.; Raven, P. H. (1983). "An embryological analysis of Myrtales: its definition and characteristics" (PDF). Ann. Missouri Bot. Gard. 70 (1): 71–94. doi:10.2307/2399008. JSTOR 2399008.
  32. Chen, C. J.; Hoch, P. C.; Raven, P. H. (1992). "Systematics of Epilobium (Onagraceae) in China". Syst. Bot. Monogr. 34: 1–209. doi:10.2307/25027806. JSTOR 25027806. S2CID 89989636.
  33. Dietrich, W.; Wagner, W. L.; Raven, P. H. (1997). "Systematics of Oenothera Section Oenothera Subsection Oenothera (Onagraceae)". Syst. Bot. Monogr. 50: 1–234. doi:10.2307/25027870. JSTOR 25027870.
  34. Wagner, Warren L.; Hoch, Peter C.; Raven, Peter H. (2007). "Revised Classification of the Onagraceae". Syst. Bot. Monogr. 83: 1–240.
  35. Polhill, R. M.; Raven, P. H. (1981). "Advances in Legume Systematics". Royal Botanic Gardens, Kew. 1, 2: 1–1049.
  36. Raven, P. H. (1966). Native Shrubs of Southern California. Berkeley and Los Angeles: University of California Press. pp. 132.
  37. Thompson, H. H.; Prigge, B. A.; Raven, P. H. (1986). Flora of the Santa Monica Mountains, California. Los Angeles: University of California. pp. 185.
  38. Zheng-yi, Wu; Raven, P. H. (1994). Flora of China. Verbenaceae through Solanaceae, Vol. 17. Science Press (Beijing) and Missouri Botanical Garden (St. Louis). p. 378.
  39. Zheng-yi, Wu; Raven, P. H. (1994). Flora of China. Gentianaceae through Boraginaceae, Vol. 16. Science Press (Beijing) and Missouri Botanical Garden (St. Louis). p. 479.
  40. Zheng-yi, Wu; Raven, P. H. (1996). Flora of China. Myrsinaceae through Loganiaceae, Vol. 15. Science Press (Beijing) and Missouri Botanical Garden (St. Louis). p. 387.
  41. Zheng-yi, Wu; Raven, P. H. (1998). Flora of China. Scrophulariaceae through Gesneriaceae, Vol. 18. Science Press (Beijing) and Missouri Botanical Garden (St. Louis). p. 449.
  42. Berlin, Brent; Breedlove, Dennis E.; Raven, Peter H. (1968). "Covert Categories and Folk Taxonomies". American Anthropologist. 70 (2): 290–299. doi:10.1525/aa.1968.70.2.02a00050.
  43. Berlin, Brent; Breedlove, Dennis E.; Rave, Peter H. (1974). Principles of Tzeltal Plant Classification: An Introduction to the Bothanical Ethnography of a Mayan-Speaking People of Highland Chiapas. New York, London: Academic Press. pp. 660. ISBN 0-12-785047-3.
  44. ^ Berlin, Brent; Breedlove, Dennis E.; Raven, Peter H. (1973). "General principles of classification and nomenclature in folk biology". American Anthropologist. 75: 214–242. doi:10.1525/aa.1973.75.1.02a00140.
  45. Berlin, Brent; Breedlove, Dennis E.; Raven, Peter H. (1973). "General Principles of Classification and Nomenclature in Folk Biology". American Anthropologist. 75: 214–242. doi:10.1525/aa.1973.75.1.02a00140.
  46. Staff writer (2014). "The 2010 William L. Brown Award". William L. Brown Center for Plant Genetic Resources. Missouri Botanical Garden. Retrieved 31 March 2014.
  47. ^ Peter H. Raven -- Curriculum Vita, retrieved 8 September 2010
  48. "2014 RHS Awards for Exceptional Contributions to Horticulture Announced". Archived from the original on 17 March 2017. Retrieved 24 December 2016.
  49. "Golden Plate Awardees of the American Academy of Achievement". www.achievement.org. American Academy of Achievement.
  50. St. Louis Walk of Fame. "St. Louis Walk of Fame Inductees". stlouiswalkoffame.org. Archived from the original on 31 October 2012. Retrieved 25 April 2013.
  51. "APS Member History". search.amphilsoc.org. Retrieved 28 April 2022.
  52. "Peter H. Raven". www.nasonline.org. Retrieved 28 April 2022.
  53. "Peter Hamilton Raven". American Academy of Arts & Sciences. Retrieved 28 April 2022.
  54. "Royal Patrons and Honorary Fellows". Retrieved 10 January 2016.
  55. "Megacorax S.González & W.L.Wagner | Plants of the World Online | Kew Science". Plants of the World Online. Retrieved 27 May 2021.
  56. Weerakoon, Gothamie; Lücking, Robert; Lumbsch, H. Thorsten (2014). "Thirteen new species of Graphidaceae (lichenized Ascomycota: Ostropales) from Sri Lanka". Phytotaxa. 189 (1): 331–347. doi:10.11646/phytotaxa.189.1.24.
  57. International Plant Names Index.  P.H.Raven.

External links

United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
2020s
2023
Huda Akil
Shelley E. Taylor
2025
Larry Bartels
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
2020s
2023
Gebisa Ejeta
Eve Marder
Gregory Petsko
Sheldon Weinbaum
2025
Bonnie Bassler
Angela Belcher
Helen Blau
Emery N. Brown
G. David Tilman
Teresa Woodruff
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
2025
R. Lawrence Edwards
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
2020s
2023
Subra Suresh
2025
John Dabiri
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
2020s
2025
Ingrid Daubechies
Cynthia Dwork
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
2020s
2023
Barry Barish
Myriam Sarachik
2025
Richard Alley
Wendy Freedman
Keivan Stassun
Presidents of the Botanical Society of America
1894–1924
1925–1949
1950–1974
1975–1999
2000–present
Fellows of the Royal Society elected in 2002
Fellows
Foreign
List of fellows of the Royal Society
Categories: