Misplaced Pages

Power residue symbol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Power reciprocity law)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (October 2022) (Learn how and when to remove this message)

In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higher reciprocity laws.

Background and notation

Let k be an algebraic number field with ring of integers O k {\displaystyle {\mathcal {O}}_{k}} that contains a primitive n-th root of unity ζ n . {\displaystyle \zeta _{n}.}

Let p O k {\displaystyle {\mathfrak {p}}\subset {\mathcal {O}}_{k}} be a prime ideal and assume that n and p {\displaystyle {\mathfrak {p}}} are coprime (i.e. n p {\displaystyle n\not \in {\mathfrak {p}}} .)

The norm of p {\displaystyle {\mathfrak {p}}} is defined as the cardinality of the residue class ring (note that since p {\displaystyle {\mathfrak {p}}} is prime the residue class ring is a finite field):

N p := | O k / p | . {\displaystyle \mathrm {N} {\mathfrak {p}}:=|{\mathcal {O}}_{k}/{\mathfrak {p}}|.}

An analogue of Fermat's theorem holds in O k . {\displaystyle {\mathcal {O}}_{k}.} If α O k p , {\displaystyle \alpha \in {\mathcal {O}}_{k}-{\mathfrak {p}},} then

α N p 1 1 mod p . {\displaystyle \alpha ^{\mathrm {N} {\mathfrak {p}}-1}\equiv 1{\bmod {\mathfrak {p}}}.}

And finally, suppose N p 1 mod n . {\displaystyle \mathrm {N} {\mathfrak {p}}\equiv 1{\bmod {n}}.} These facts imply that

α N p 1 n ζ n s mod p {\displaystyle \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}\equiv \zeta _{n}^{s}{\bmod {\mathfrak {p}}}}

is well-defined and congruent to a unique n {\displaystyle n} -th root of unity ζ n s . {\displaystyle \zeta _{n}^{s}.}

Definition

This root of unity is called the n-th power residue symbol for O k , {\displaystyle {\mathcal {O}}_{k},} and is denoted by

( α p ) n = ζ n s α N p 1 n mod p . {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=\zeta _{n}^{s}\equiv \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}{\bmod {\mathfrak {p}}}.}

Properties

The n-th power symbol has properties completely analogous to those of the classical (quadratic) Jacobi symbol ( ζ {\displaystyle \zeta } is a fixed primitive n {\displaystyle n} -th root of unity):

( α p ) n = { 0 α p 1 α p  and  η O k : α η n mod p ζ α p  and there is no such  η {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}={\begin{cases}0&\alpha \in {\mathfrak {p}}\\1&\alpha \not \in {\mathfrak {p}}{\text{ and }}\exists \eta \in {\mathcal {O}}_{k}:\alpha \equiv \eta ^{n}{\bmod {\mathfrak {p}}}\\\zeta &\alpha \not \in {\mathfrak {p}}{\text{ and there is no such }}\eta \end{cases}}}

In all cases (zero and nonzero)

( α p ) n α N p 1 n mod p . {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}\equiv \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}{\bmod {\mathfrak {p}}}.}
( α p ) n ( β p ) n = ( α β p ) n {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}\left({\frac {\beta }{\mathfrak {p}}}\right)_{n}=\left({\frac {\alpha \beta }{\mathfrak {p}}}\right)_{n}}
α β mod p ( α p ) n = ( β p ) n {\displaystyle \alpha \equiv \beta {\bmod {\mathfrak {p}}}\quad \Rightarrow \quad \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=\left({\frac {\beta }{\mathfrak {p}}}\right)_{n}}

All power residue symbols mod n are Dirichlet characters mod n, and the m-th power residue symbol only contains the m-th roots of unity, the m-th power residue symbol mod n exists if and only if m divides λ ( n ) {\displaystyle \lambda (n)} (the Carmichael lambda function of n).

Relation to the Hilbert symbol

The n-th power residue symbol is related to the Hilbert symbol ( , ) p {\displaystyle (\cdot ,\cdot )_{\mathfrak {p}}} for the prime p {\displaystyle {\mathfrak {p}}} by

( α p ) n = ( π , α ) p {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=(\pi ,\alpha )_{\mathfrak {p}}}

in the case p {\displaystyle {\mathfrak {p}}} coprime to n, where π {\displaystyle \pi } is any uniformising element for the local field K p {\displaystyle K_{\mathfrak {p}}} .

Generalizations

The n {\displaystyle n} -th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.

Any ideal a O k {\displaystyle {\mathfrak {a}}\subset {\mathcal {O}}_{k}} is the product of prime ideals, and in one way only:

a = p 1 p g . {\displaystyle {\mathfrak {a}}={\mathfrak {p}}_{1}\cdots {\mathfrak {p}}_{g}.}

The n {\displaystyle n} -th power symbol is extended multiplicatively:

( α a ) n = ( α p 1 ) n ( α p g ) n . {\displaystyle \left({\frac {\alpha }{\mathfrak {a}}}\right)_{n}=\left({\frac {\alpha }{{\mathfrak {p}}_{1}}}\right)_{n}\cdots \left({\frac {\alpha }{{\mathfrak {p}}_{g}}}\right)_{n}.}

For 0 β O k {\displaystyle 0\neq \beta \in {\mathcal {O}}_{k}} then we define

( α β ) n := ( α ( β ) ) n , {\displaystyle \left({\frac {\alpha }{\beta }}\right)_{n}:=\left({\frac {\alpha }{(\beta )}}\right)_{n},}

where ( β ) {\displaystyle (\beta )} is the principal ideal generated by β . {\displaystyle \beta .}

Analogous to the quadratic Jacobi symbol, this symbol is multiplicative in the top and bottom parameters.

  • If α β mod a {\displaystyle \alpha \equiv \beta {\bmod {\mathfrak {a}}}} then ( α a ) n = ( β a ) n . {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=\left({\tfrac {\beta }{\mathfrak {a}}}\right)_{n}.}
  • ( α a ) n ( β a ) n = ( α β a ) n . {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\left({\tfrac {\beta }{\mathfrak {a}}}\right)_{n}=\left({\tfrac {\alpha \beta }{\mathfrak {a}}}\right)_{n}.}
  • ( α a ) n ( α b ) n = ( α a b ) n . {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\left({\tfrac {\alpha }{\mathfrak {b}}}\right)_{n}=\left({\tfrac {\alpha }{\mathfrak {ab}}}\right)_{n}.}

Since the symbol is always an n {\displaystyle n} -th root of unity, because of its multiplicativity it is equal to 1 whenever one parameter is an n {\displaystyle n} -th power; the converse is not true.

  • If α η n mod a {\displaystyle \alpha \equiv \eta ^{n}{\bmod {\mathfrak {a}}}} then ( α a ) n = 1. {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=1.}
  • If ( α a ) n 1 {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\neq 1} then α {\displaystyle \alpha } is not an n {\displaystyle n} -th power modulo a . {\displaystyle {\mathfrak {a}}.}
  • If ( α a ) n = 1 {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=1} then α {\displaystyle \alpha } may or may not be an n {\displaystyle n} -th power modulo a . {\displaystyle {\mathfrak {a}}.}

Power reciprocity law

The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols as

( α β ) n ( β α ) n 1 = p | n ( α , β ) p , {\displaystyle \left({\frac {\alpha }{\beta }}\right)_{n}\left({\frac {\beta }{\alpha }}\right)_{n}^{-1}=\prod _{{\mathfrak {p}}|n\infty }(\alpha ,\beta )_{\mathfrak {p}},}

whenever α {\displaystyle \alpha } and β {\displaystyle \beta } are coprime.

See also

Notes

  1. Quadratic reciprocity deals with squares; higher refers to cubes, fourth, and higher powers.
  2. All the facts in this article are in Lemmermeyer Ch. 4.1 and Ireland & Rosen Ch. 14.2
  3. Neukirch (1999) p. 336
  4. Neukirch (1999) p. 415

References

Category: