Misplaced Pages

Hereditary set

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Pure sets)

In set theory, a hereditary set (or pure set) is a set whose elements are all hereditary sets. That is, all elements of the set are themselves sets, as are all elements of the elements, and so on.

Examples

For example, it is vacuously true that the empty set is a hereditary set, and thus the set { } {\displaystyle \{\varnothing \}} containing only the empty set {\displaystyle \varnothing } is a hereditary set. Similarly, a set { , { } } {\displaystyle \{\varnothing ,\{\varnothing \}\}} that contains two elements: the empty set and the set that contains only the empty set, is a hereditary set.

In formulations of set theory

In formulations of set theory that are intended to be interpreted in the von Neumann universe or to express the content of Zermelo–Fraenkel set theory, all sets are hereditary, because the only sort of object that is even a candidate to be an element of a set is another set. Thus the notion of hereditary set is interesting only in a context in which there may be urelements.

Assumptions

The inductive definition of hereditary sets presupposes that set membership is well-founded (i.e., the axiom of regularity), otherwise the recurrence may not have a unique solution. However, it can be restated non-inductively as follows: a set is hereditary if and only if its transitive closure contains only sets. In this way the concept of hereditary sets can also be extended to non-well-founded set theories in which sets can be members of themselves. For example, a set that contains only itself is a hereditary set.

See also

References

Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal
Category: