Misplaced Pages

Ribbon category

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, a ribbon category, also called a tortile category, is a particular type of braided monoidal category.

Definition

A monoidal category C {\displaystyle {\mathcal {C}}} is, loosely speaking, a category equipped with a notion resembling the tensor product (of vector spaces, say). That is, for any two objects C 1 , C 2 C {\displaystyle C_{1},C_{2}\in {\mathcal {C}}} , there is an object C 1 C 2 C {\displaystyle C_{1}\otimes C_{2}\in {\mathcal {C}}} . The assignment C 1 , C 2 C 1 C 2 {\displaystyle C_{1},C_{2}\mapsto C_{1}\otimes C_{2}} is supposed to be functorial and needs to require a number of further properties such as a unit object 1 and an associativity isomorphism. Such a category is called braided if there are isomorphisms

c C 1 , C 2 : C 1 C 2 C 2 C 1 . {\displaystyle c_{C_{1},C_{2}}:C_{1}\otimes C_{2}{\stackrel {\cong }{\rightarrow }}C_{2}\otimes C_{1}.}

A braided monoidal category is called a ribbon category if the category is left rigid and has a family of twists. The former means that for each object C {\displaystyle C} there is another object (called the left dual), C {\displaystyle C^{*}} , with maps

1 C C , C C 1 {\displaystyle 1\rightarrow C\otimes C^{*},C^{*}\otimes C\rightarrow 1}

such that the compositions

C C 1 C ( C C ) ( C C ) C 1 C C {\displaystyle C^{*}\cong C^{*}\otimes 1\rightarrow C^{*}\otimes (C\otimes C^{*})\cong (C^{*}\otimes C)\otimes C^{*}\rightarrow 1\otimes C^{*}\cong C^{*}}

equals the identity of C {\displaystyle C^{*}} , and similarly with C {\displaystyle C} . The twists are maps

C C {\displaystyle C\in {\mathcal {C}}} , θ C : C C {\displaystyle \theta _{C}:C\rightarrow C}

such that

θ C 1 C 2 = c C 2 , C 1 c C 1 , C 2 ( θ C 1 θ C 2 ) θ 1 = i d θ C = ( θ C ) . {\displaystyle {\begin{aligned}\theta _{C_{1}\otimes C_{2}}&=c_{C_{2},C_{1}}c_{C_{1},C_{2}}(\theta _{C_{1}}\otimes \theta _{C_{2}})\\\theta _{1}&=\mathrm {id} \\\theta _{C^{*}}&=(\theta _{C})^{*}.\end{aligned}}}

To be a ribbon category, the duals have to be thus compatible with the braiding and the twists.

Concrete Example

Consider the category F d V e c t ( C ) {\displaystyle \mathbf {FdVect} (\mathbb {C} )} of finite-dimensional vector spaces over C {\displaystyle \mathbb {C} } . Suppose that C {\displaystyle C} is such a vector space, spanned by the basis vectors e 1 ^ , e 2 ^ , , e n ^ {\displaystyle {\hat {e_{1}}},{\hat {e_{2}}},\cdots ,{\hat {e_{n}}}} . We assign to C {\displaystyle C} the dual object C {\displaystyle C^{\dagger }} spanned by the basis vectors e ^ 1 , e ^ 2 , , e ^ n {\displaystyle {\hat {e}}^{1},{\hat {e}}^{2},\cdots ,{\hat {e}}^{n}} . Then let us define

:   C C 1 e ^ i e j ^ { 1 i = j 0 i j {\displaystyle {\begin{aligned}\cdot :\ C^{\dagger }\otimes C&\to 1\\{\hat {e}}^{i}\cdot {\hat {e_{j}}}&\mapsto {\begin{cases}1&i=j\\0&i\neq j\end{cases}}\end{aligned}}}

and its dual

k I n : 1 C C k k i = 1 n e i ^ e ^ i = ( k 0 0 0 k 0 k ) {\displaystyle {\begin{aligned}kI_{n}:1&\to C\otimes C^{\dagger }\\k&\mapsto k\sum _{i=1}^{n}{\hat {e_{i}}}\otimes {\hat {e}}^{i}\\&={\begin{pmatrix}k&0&\cdots &0\\0&k&&\vdots \\&&\ddots &\\0&\cdots &&k\end{pmatrix}}\end{aligned}}}

(which largely amounts to assigning a given e i ^ {\displaystyle {\hat {e_{i}}}} the dual e ^ i {\displaystyle {\hat {e}}^{i}} ).

Then indeed we find that (for example)

e ^ i e ^ i 1 I n e ^ i j = 1 n e j ^ e ^ j j = 1 n ( e ^ i e j ^ ) e ^ j j = 1 n { 1 e ^ j i = j 0 e ^ j i j = 1 e ^ i e ^ i {\displaystyle {\begin{aligned}{\hat {e}}^{i}&\cong {\hat {e}}^{i}\otimes 1\\&{\underset {I_{n}}{\to }}{\hat {e}}^{i}\otimes \sum _{j=1}^{n}{\hat {e_{j}}}\otimes {\hat {e}}^{j}\\&\cong \sum _{j=1}^{n}\left({\hat {e}}^{i}\otimes {\hat {e_{j}}}\right)\otimes {\hat {e}}^{j}\\&{\underset {\cdot }{\to }}\sum _{j=1}^{n}{\begin{cases}1\otimes {\hat {e}}^{j}&i=j\\0\otimes {\hat {e}}^{j}&i\neq j\end{cases}}\\&=1\otimes {\hat {e}}^{i}\cong {\hat {e}}^{i}\end{aligned}}}

and similarly for e i ^ {\displaystyle {\hat {e_{i}}}} . Since this proof applies to any finite-dimensional vector space, we have shown that our structure over F d V e c t {\displaystyle \mathbf {FdVect} } defines a (left) rigid monoidal category.

Then, we must define braids and twists in such a way that they are compatible. In this case, this largely makes one determined given the other on the reals. For example, if we take the trivial braiding

c C 1 , C 2 : C 1 C 2 C 2 C 1 c C 1 , C 2 ( a , b ) ( b , a ) {\displaystyle {\begin{aligned}c_{C_{1},C_{2}}:C_{1}\otimes C_{2}&\to C_{2}\otimes C_{1}\\c_{C_{1},C_{2}}(a,b)&\mapsto (b,a)\end{aligned}}}

then c C 1 , C 2 c C 2 , C 1 = i d C 1 C 2 {\displaystyle c_{C_{1},C_{2}}c_{C_{2},C_{1}}=\mathrm {id} _{C_{1}\otimes C_{2}}} , so our twist must obey θ C 1 C 2 = θ C 1 θ C 2 {\displaystyle \theta _{C_{1}\otimes C_{2}}=\theta _{C_{1}}\otimes \theta _{C_{2}}} . In other words it must operate elementwise across tensor products. But any object C F d V e c t {\displaystyle C\in \mathbf {FdVect} } can be written in the form C = i = 1 n 1 {\displaystyle C=\bigotimes _{i=1}^{n}1} for some n {\displaystyle n} , θ C = i = 1 n θ 1 = i = 1 n i d = i d C {\displaystyle \theta _{C}=\bigotimes _{i=1}^{n}\theta _{1}=\bigotimes _{i=1}^{n}\mathrm {id} =\mathrm {id} _{C}} , so our twists must also be trivial.

On the other hand, we can introduce any nonzero multiplicative factor into the above braiding rule without breaking isomorphism (at least in C {\displaystyle \mathbb {C} } ). Let us for example take the braiding

c C 1 , C 2 : C 1 C 2 C 2 C 1 c C 1 , C 2 ( a , b ) i ( b , a ) {\displaystyle {\begin{aligned}c_{C_{1},C_{2}}:C_{1}\otimes C_{2}&\to C_{2}\otimes C_{1}\\c_{C_{1},C_{2}}(a,b)&\mapsto i(b,a)\end{aligned}}}

Then c C 1 , C 2 c C 2 , C 1 = i d C 1 C 2 {\displaystyle c_{C_{1},C_{2}}c_{C_{2},C_{1}}=-\mathrm {id} _{C_{1}\otimes C_{2}}} . Since θ 1 = i d {\displaystyle \theta _{1}=\mathrm {id} } , then θ 1 1 = i d 1 1 {\displaystyle \theta _{1\otimes 1}=-\mathrm {id} _{1\otimes 1}} ; by induction, if C {\displaystyle C} is n {\displaystyle n} -dimensional, then θ C = ( 1 ) n + 1 i d C {\displaystyle \theta _{C}=(-1)^{n+1}\mathrm {id} _{C}} .

Other Examples

The name ribbon category is motivated by a graphical depiction of morphisms.

Variant

A strongly ribbon category is a ribbon category C equipped with a dagger structure such that the functor †: CC coherently preserves the ribbon structure.

References

  1. Turaev 2020, XI. An algebraic construction of modular categories
  2. Turaev 2020, p. 25
Categories: