Misplaced Pages

Shockley–Ramo theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Shockley-Ramo theorem)

The Shockley–Ramo theorem is a method for calculating the electric current induced by a charge moving in the vicinity of an electrode. Previously named simply the "Ramo Theorem", the modified name was introduced by D.S. McGregor et al. in 1998 to recognize the contributions of both Shockley and Ramo to understanding the influence of mobile charges in a radiation detector. The theorem appeared in William Shockley's 1938 paper titled "Currents to Conductors Induced by a Moving Point Charge" and in Simon Ramo's 1939 paper titled "Currents Induced by Electron Motion". It is based on the concept that the current induced in the electrode is due to the instantaneous change of electrostatic flux lines that end on the electrode, rather than the amount of charge received by the electrode per second (net charge flow rate).

The Shockley–Ramo theorem states that the instantaneous current i {\displaystyle i} induced on a given electrode due to the motion of a charge is given by:

i = E v q v {\displaystyle i=E_{v}qv}

where

q {\displaystyle q} is the charge of the particle;
v {\displaystyle v} is its instantaneous velocity; and
E v {\displaystyle E_{v}} is the component of the electric field in the direction of v {\displaystyle v} at the charge's instantaneous position, under the following conditions: charge removed, given electrode raised to unit potential, and all other conductors grounded.

The theorem has been applied to a wide variety of applications and fields, including semiconductor radiation detection, calculations of charge movement in proteins., or the detection of moving ions in vacuum for mass spectrometry or ion implantation.

References

  1. McGregor, D.S.; He, Z.; Seifert, H.A.; Wehe, D.K.; Rojeski, R.A. (1998). "CdZnTe semiconductor parallel strip Frisch grid radiation detectors". IEEE Trans. Nuclear Sci. 45 (3): 443–449. Bibcode:1998ITNS...45..443M. doi:10.1109/23.682424.
  2. Shockley, W. (1938). "Currents to Conductors Induced by a Moving Point Charge". Journal of Applied Physics. 9 (10): 635–636. Bibcode:1938JAP.....9..635S. doi:10.1063/1.1710367.
  3. Ramo, S. (1939). "Currents Induced by Electron Motion". Proceedings of the IRE. 27 (9): 584–585. doi:10.1109/JRPROC.1939.228757. S2CID 51657875.
  4. He, Z (2001). "Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors" (PDF). Nuclear Instruments and Methods in Physics Research Section A. 463 (1–2): 250–267. Bibcode:2001NIMPA.463..250H. doi:10.1016/S0168-9002(01)00223-6.
  5. Eisenberg, Bob; Nonner, Wolfgang (2007). "Shockley-Ramo theorem measures conformation changes of ion channels and proteins". Journal of Computational Electronics. 6 (1–3): 363–365. doi:10.1007/s10825-006-0130-6. S2CID 52236338.
  6. Jarrold, Martin F. (2022-04-27). "Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology". Chemical Reviews. 122 (8): 7415–7441. doi:10.1021/acs.chemrev.1c00377. ISSN 0009-2665. PMC 10842748. PMID 34637283. S2CID 238745706.
  7. Räcke, Paul; Spemann, Daniel; Gerlach, Jürgen W.; Rauschenbach, Bernd; Meijer, Jan (2018-06-28). "Detection of small bunches of ions using image charges". Scientific Reports. 8 (1): 9781. Bibcode:2018NatSR...8.9781R. doi:10.1038/s41598-018-28167-6. ISSN 2045-2322. PMC 6023920. PMID 29955102.

External links

Categories: