(Redirected from Superconformal )
Algebra combining both supersymmetry and conformal symmetry
In theoretical physics , the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry . In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group (in two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup ).
Superconformal algebra in dimension greater than 2
The conformal group of the
(
p
+
q
)
{\displaystyle (p+q)}
-dimensional space
R
p
,
q
{\displaystyle \mathbb {R} ^{p,q}}
is
S
O
(
p
+
1
,
q
+
1
)
{\displaystyle SO(p+1,q+1)}
and its Lie algebra is
s
o
(
p
+
1
,
q
+
1
)
{\displaystyle {\mathfrak {so}}(p+1,q+1)}
. The superconformal algebra is a Lie superalgebra containing the bosonic factor
s
o
(
p
+
1
,
q
+
1
)
{\displaystyle {\mathfrak {so}}(p+1,q+1)}
and whose odd generators transform in spinor representations of
s
o
(
p
+
1
,
q
+
1
)
{\displaystyle {\mathfrak {so}}(p+1,q+1)}
. Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of
p
{\displaystyle p}
and
q
{\displaystyle q}
. A (possibly incomplete) list is
o
s
p
∗
(
2
N
|
2
,
2
)
{\displaystyle {\mathfrak {osp}}^{*}(2N|2,2)}
in 3+0D thanks to
u
s
p
(
2
,
2
)
≃
s
o
(
4
,
1
)
{\displaystyle {\mathfrak {usp}}(2,2)\simeq {\mathfrak {so}}(4,1)}
;
o
s
p
(
N
|
4
)
{\displaystyle {\mathfrak {osp}}(N|4)}
in 2+1D thanks to
s
p
(
4
,
R
)
≃
s
o
(
3
,
2
)
{\displaystyle {\mathfrak {sp}}(4,\mathbb {R} )\simeq {\mathfrak {so}}(3,2)}
;
s
u
∗
(
2
N
|
4
)
{\displaystyle {\mathfrak {su}}^{*}(2N|4)}
in 4+0D thanks to
s
u
∗
(
4
)
≃
s
o
(
5
,
1
)
{\displaystyle {\mathfrak {su}}^{*}(4)\simeq {\mathfrak {so}}(5,1)}
;
s
u
(
2
,
2
|
N
)
{\displaystyle {\mathfrak {su}}(2,2|N)}
in 3+1D thanks to
s
u
(
2
,
2
)
≃
s
o
(
4
,
2
)
{\displaystyle {\mathfrak {su}}(2,2)\simeq {\mathfrak {so}}(4,2)}
;
s
l
(
4
|
N
)
{\displaystyle {\mathfrak {sl}}(4|N)}
in 2+2D thanks to
s
l
(
4
,
R
)
≃
s
o
(
3
,
3
)
{\displaystyle {\mathfrak {sl}}(4,\mathbb {R} )\simeq {\mathfrak {so}}(3,3)}
;
real forms of
F
(
4
)
{\displaystyle F(4)}
in five dimensions
o
s
p
(
8
∗
|
2
N
)
{\displaystyle {\mathfrak {osp}}(8^{*}|2N)}
in 5+1D, thanks to the fact that spinor and fundamental representations of
s
o
(
8
,
C
)
{\displaystyle {\mathfrak {so}}(8,\mathbb {C} )}
are mapped to each other by outer automorphisms.
Superconformal algebra in 3+1D
According to the superconformal algebra with
N
{\displaystyle {\mathcal {N}}}
supersymmetries in 3+1 dimensions is given by the bosonic generators
P
μ
{\displaystyle P_{\mu }}
,
D
{\displaystyle D}
,
M
μ
ν
{\displaystyle M_{\mu \nu }}
,
K
μ
{\displaystyle K_{\mu }}
, the U(1) R-symmetry
A
{\displaystyle A}
, the SU(N) R-symmetry
T
j
i
{\displaystyle T_{j}^{i}}
and the fermionic generators
Q
α
i
{\displaystyle Q^{\alpha i}}
,
Q
¯
i
α
˙
{\displaystyle {\overline {Q}}_{i}^{\dot {\alpha }}}
,
S
i
α
{\displaystyle S_{i}^{\alpha }}
and
S
¯
α
˙
i
{\displaystyle {\overline {S}}^{{\dot {\alpha }}i}}
. Here,
μ
,
ν
,
ρ
,
…
{\displaystyle \mu ,\nu ,\rho ,\dots }
denote spacetime indices;
α
,
β
,
…
{\displaystyle \alpha ,\beta ,\dots }
left-handed Weyl spinor indices;
α
˙
,
β
˙
,
…
{\displaystyle {\dot {\alpha }},{\dot {\beta }},\dots }
right-handed Weyl spinor indices; and
i
,
j
,
…
{\displaystyle i,j,\dots }
the internal R-symmetry indices.
The Lie superbrackets of the bosonic conformal algebra are given by
[
M
μ
ν
,
M
ρ
σ
]
=
η
ν
ρ
M
μ
σ
−
η
μ
ρ
M
ν
σ
+
η
ν
σ
M
ρ
μ
−
η
μ
σ
M
ρ
ν
{\displaystyle =\eta _{\nu \rho }M_{\mu \sigma }-\eta _{\mu \rho }M_{\nu \sigma }+\eta _{\nu \sigma }M_{\rho \mu }-\eta _{\mu \sigma }M_{\rho \nu }}
[
M
μ
ν
,
P
ρ
]
=
η
ν
ρ
P
μ
−
η
μ
ρ
P
ν
{\displaystyle =\eta _{\nu \rho }P_{\mu }-\eta _{\mu \rho }P_{\nu }}
[
M
μ
ν
,
K
ρ
]
=
η
ν
ρ
K
μ
−
η
μ
ρ
K
ν
{\displaystyle =\eta _{\nu \rho }K_{\mu }-\eta _{\mu \rho }K_{\nu }}
[
M
μ
ν
,
D
]
=
0
{\displaystyle =0}
[
D
,
P
ρ
]
=
−
P
ρ
{\displaystyle =-P_{\rho }}
[
D
,
K
ρ
]
=
+
K
ρ
{\displaystyle =+K_{\rho }}
[
P
μ
,
K
ν
]
=
−
2
M
μ
ν
+
2
η
μ
ν
D
{\displaystyle =-2M_{\mu \nu }+2\eta _{\mu \nu }D}
[
K
n
,
K
m
]
=
0
{\displaystyle =0}
[
P
n
,
P
m
]
=
0
{\displaystyle =0}
where η is the Minkowski metric ; while the ones for the fermionic generators are:
{
Q
α
i
,
Q
¯
β
˙
j
}
=
2
δ
i
j
σ
α
β
˙
μ
P
μ
{\displaystyle \left\{Q_{\alpha i},{\overline {Q}}_{\dot {\beta }}^{j}\right\}=2\delta _{i}^{j}\sigma _{\alpha {\dot {\beta }}}^{\mu }P_{\mu }}
{
Q
,
Q
}
=
{
Q
¯
,
Q
¯
}
=
0
{\displaystyle \left\{Q,Q\right\}=\left\{{\overline {Q}},{\overline {Q}}\right\}=0}
{
S
α
i
,
S
¯
β
˙
j
}
=
2
δ
j
i
σ
α
β
˙
μ
K
μ
{\displaystyle \left\{S_{\alpha }^{i},{\overline {S}}_{{\dot {\beta }}j}\right\}=2\delta _{j}^{i}\sigma _{\alpha {\dot {\beta }}}^{\mu }K_{\mu }}
{
S
,
S
}
=
{
S
¯
,
S
¯
}
=
0
{\displaystyle \left\{S,S\right\}=\left\{{\overline {S}},{\overline {S}}\right\}=0}
{
Q
,
S
}
=
{\displaystyle \left\{Q,S\right\}=}
{
Q
,
S
¯
}
=
{
Q
¯
,
S
}
=
0
{\displaystyle \left\{Q,{\overline {S}}\right\}=\left\{{\overline {Q}},S\right\}=0}
The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:
[
A
,
M
]
=
[
A
,
D
]
=
[
A
,
P
]
=
[
A
,
K
]
=
0
{\displaystyle ====0}
[
T
,
M
]
=
[
T
,
D
]
=
[
T
,
P
]
=
[
T
,
K
]
=
0
{\displaystyle ====0}
But the fermionic generators do carry R-charge:
[
A
,
Q
]
=
−
1
2
Q
{\displaystyle =-{\frac {1}{2}}Q}
[
A
,
Q
¯
]
=
1
2
Q
¯
{\displaystyle ={\frac {1}{2}}{\overline {Q}}}
[
A
,
S
]
=
1
2
S
{\displaystyle ={\frac {1}{2}}S}
[
A
,
S
¯
]
=
−
1
2
S
¯
{\displaystyle =-{\frac {1}{2}}{\overline {S}}}
[
T
j
i
,
Q
k
]
=
−
δ
k
i
Q
j
{\displaystyle =-\delta _{k}^{i}Q_{j}}
[
T
j
i
,
Q
¯
k
]
=
δ
j
k
Q
¯
i
{\displaystyle =\delta _{j}^{k}{\overline {Q}}^{i}}
[
T
j
i
,
S
k
]
=
δ
j
k
S
i
{\displaystyle =\delta _{j}^{k}S^{i}}
[
T
j
i
,
S
¯
k
]
=
−
δ
k
i
S
¯
j
{\displaystyle =-\delta _{k}^{i}{\overline {S}}_{j}}
Under bosonic conformal transformations, the fermionic generators transform as:
[
D
,
Q
]
=
−
1
2
Q
{\displaystyle =-{\frac {1}{2}}Q}
[
D
,
Q
¯
]
=
−
1
2
Q
¯
{\displaystyle =-{\frac {1}{2}}{\overline {Q}}}
[
D
,
S
]
=
1
2
S
{\displaystyle ={\frac {1}{2}}S}
[
D
,
S
¯
]
=
1
2
S
¯
{\displaystyle ={\frac {1}{2}}{\overline {S}}}
[
P
,
Q
]
=
[
P
,
Q
¯
]
=
0
{\displaystyle ==0}
[
K
,
S
]
=
[
K
,
S
¯
]
=
0
{\displaystyle ==0}
Superconformal algebra in 2D
Main article: super Virasoro algebra
There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra .
See also
References
West, P. C. (2002). "Introduction to Rigid Supersymmetric Theories". Confinement, Duality, and Non-Perturbative Aspects of QCD . NATO Science Series: B. Vol. 368. pp. 453–476. arXiv :hep-th/9805055 . doi :10.1007/0-306-47056-X_17 . ISBN 0-306-45826-8 . S2CID 119413468 .
Gates, S. J.; Grisaru, Marcus T.; Rocek, M. ; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics . 58 : 1–548. arXiv :hep-th/0108200 . Bibcode :2001hep.th....8200G .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑