Misplaced Pages

Superconformal algebra

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Superconformal) Algebra combining both supersymmetry and conformal symmetry
This article may require cleanup to meet Misplaced Pages's quality standards. The specific problem is: This stub is remarkably poorly written and should be fixed to read in a more pedagogical fashion. Please help improve this article if you can. (May 2015) (Learn how and when to remove this message)

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group (in two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup).

Superconformal algebra in dimension greater than 2

The conformal group of the ( p + q ) {\displaystyle (p+q)} -dimensional space R p , q {\displaystyle \mathbb {R} ^{p,q}} is S O ( p + 1 , q + 1 ) {\displaystyle SO(p+1,q+1)} and its Lie algebra is s o ( p + 1 , q + 1 ) {\displaystyle {\mathfrak {so}}(p+1,q+1)} . The superconformal algebra is a Lie superalgebra containing the bosonic factor s o ( p + 1 , q + 1 ) {\displaystyle {\mathfrak {so}}(p+1,q+1)} and whose odd generators transform in spinor representations of s o ( p + 1 , q + 1 ) {\displaystyle {\mathfrak {so}}(p+1,q+1)} . Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of p {\displaystyle p} and q {\displaystyle q} . A (possibly incomplete) list is

  • o s p ( 2 N | 2 , 2 ) {\displaystyle {\mathfrak {osp}}^{*}(2N|2,2)} in 3+0D thanks to u s p ( 2 , 2 ) s o ( 4 , 1 ) {\displaystyle {\mathfrak {usp}}(2,2)\simeq {\mathfrak {so}}(4,1)} ;
  • o s p ( N | 4 ) {\displaystyle {\mathfrak {osp}}(N|4)} in 2+1D thanks to s p ( 4 , R ) s o ( 3 , 2 ) {\displaystyle {\mathfrak {sp}}(4,\mathbb {R} )\simeq {\mathfrak {so}}(3,2)} ;
  • s u ( 2 N | 4 ) {\displaystyle {\mathfrak {su}}^{*}(2N|4)} in 4+0D thanks to s u ( 4 ) s o ( 5 , 1 ) {\displaystyle {\mathfrak {su}}^{*}(4)\simeq {\mathfrak {so}}(5,1)} ;
  • s u ( 2 , 2 | N ) {\displaystyle {\mathfrak {su}}(2,2|N)} in 3+1D thanks to s u ( 2 , 2 ) s o ( 4 , 2 ) {\displaystyle {\mathfrak {su}}(2,2)\simeq {\mathfrak {so}}(4,2)} ;
  • s l ( 4 | N ) {\displaystyle {\mathfrak {sl}}(4|N)} in 2+2D thanks to s l ( 4 , R ) s o ( 3 , 3 ) {\displaystyle {\mathfrak {sl}}(4,\mathbb {R} )\simeq {\mathfrak {so}}(3,3)} ;
  • real forms of F ( 4 ) {\displaystyle F(4)} in five dimensions
  • o s p ( 8 | 2 N ) {\displaystyle {\mathfrak {osp}}(8^{*}|2N)} in 5+1D, thanks to the fact that spinor and fundamental representations of s o ( 8 , C ) {\displaystyle {\mathfrak {so}}(8,\mathbb {C} )} are mapped to each other by outer automorphisms.

Superconformal algebra in 3+1D

According to the superconformal algebra with N {\displaystyle {\mathcal {N}}} supersymmetries in 3+1 dimensions is given by the bosonic generators P μ {\displaystyle P_{\mu }} , D {\displaystyle D} , M μ ν {\displaystyle M_{\mu \nu }} , K μ {\displaystyle K_{\mu }} , the U(1) R-symmetry A {\displaystyle A} , the SU(N) R-symmetry T j i {\displaystyle T_{j}^{i}} and the fermionic generators Q α i {\displaystyle Q^{\alpha i}} , Q ¯ i α ˙ {\displaystyle {\overline {Q}}_{i}^{\dot {\alpha }}} , S i α {\displaystyle S_{i}^{\alpha }} and S ¯ α ˙ i {\displaystyle {\overline {S}}^{{\dot {\alpha }}i}} . Here, μ , ν , ρ , {\displaystyle \mu ,\nu ,\rho ,\dots } denote spacetime indices; α , β , {\displaystyle \alpha ,\beta ,\dots } left-handed Weyl spinor indices; α ˙ , β ˙ , {\displaystyle {\dot {\alpha }},{\dot {\beta }},\dots } right-handed Weyl spinor indices; and i , j , {\displaystyle i,j,\dots } the internal R-symmetry indices.

The Lie superbrackets of the bosonic conformal algebra are given by

[ M μ ν , M ρ σ ] = η ν ρ M μ σ η μ ρ M ν σ + η ν σ M ρ μ η μ σ M ρ ν {\displaystyle =\eta _{\nu \rho }M_{\mu \sigma }-\eta _{\mu \rho }M_{\nu \sigma }+\eta _{\nu \sigma }M_{\rho \mu }-\eta _{\mu \sigma }M_{\rho \nu }}
[ M μ ν , P ρ ] = η ν ρ P μ η μ ρ P ν {\displaystyle =\eta _{\nu \rho }P_{\mu }-\eta _{\mu \rho }P_{\nu }}
[ M μ ν , K ρ ] = η ν ρ K μ η μ ρ K ν {\displaystyle =\eta _{\nu \rho }K_{\mu }-\eta _{\mu \rho }K_{\nu }}
[ M μ ν , D ] = 0 {\displaystyle =0}
[ D , P ρ ] = P ρ {\displaystyle =-P_{\rho }}
[ D , K ρ ] = + K ρ {\displaystyle =+K_{\rho }}
[ P μ , K ν ] = 2 M μ ν + 2 η μ ν D {\displaystyle =-2M_{\mu \nu }+2\eta _{\mu \nu }D}
[ K n , K m ] = 0 {\displaystyle =0}
[ P n , P m ] = 0 {\displaystyle =0}

where η is the Minkowski metric; while the ones for the fermionic generators are:

{ Q α i , Q ¯ β ˙ j } = 2 δ i j σ α β ˙ μ P μ {\displaystyle \left\{Q_{\alpha i},{\overline {Q}}_{\dot {\beta }}^{j}\right\}=2\delta _{i}^{j}\sigma _{\alpha {\dot {\beta }}}^{\mu }P_{\mu }}
{ Q , Q } = { Q ¯ , Q ¯ } = 0 {\displaystyle \left\{Q,Q\right\}=\left\{{\overline {Q}},{\overline {Q}}\right\}=0}
{ S α i , S ¯ β ˙ j } = 2 δ j i σ α β ˙ μ K μ {\displaystyle \left\{S_{\alpha }^{i},{\overline {S}}_{{\dot {\beta }}j}\right\}=2\delta _{j}^{i}\sigma _{\alpha {\dot {\beta }}}^{\mu }K_{\mu }}
{ S , S } = { S ¯ , S ¯ } = 0 {\displaystyle \left\{S,S\right\}=\left\{{\overline {S}},{\overline {S}}\right\}=0}
{ Q , S } = {\displaystyle \left\{Q,S\right\}=}
{ Q , S ¯ } = { Q ¯ , S } = 0 {\displaystyle \left\{Q,{\overline {S}}\right\}=\left\{{\overline {Q}},S\right\}=0}

The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:

[ A , M ] = [ A , D ] = [ A , P ] = [ A , K ] = 0 {\displaystyle ====0}
[ T , M ] = [ T , D ] = [ T , P ] = [ T , K ] = 0 {\displaystyle ====0}

But the fermionic generators do carry R-charge:

[ A , Q ] = 1 2 Q {\displaystyle =-{\frac {1}{2}}Q}
[ A , Q ¯ ] = 1 2 Q ¯ {\displaystyle ={\frac {1}{2}}{\overline {Q}}}
[ A , S ] = 1 2 S {\displaystyle ={\frac {1}{2}}S}
[ A , S ¯ ] = 1 2 S ¯ {\displaystyle =-{\frac {1}{2}}{\overline {S}}}
[ T j i , Q k ] = δ k i Q j {\displaystyle =-\delta _{k}^{i}Q_{j}}
[ T j i , Q ¯ k ] = δ j k Q ¯ i {\displaystyle =\delta _{j}^{k}{\overline {Q}}^{i}}
[ T j i , S k ] = δ j k S i {\displaystyle =\delta _{j}^{k}S^{i}}
[ T j i , S ¯ k ] = δ k i S ¯ j {\displaystyle =-\delta _{k}^{i}{\overline {S}}_{j}}

Under bosonic conformal transformations, the fermionic generators transform as:

[ D , Q ] = 1 2 Q {\displaystyle =-{\frac {1}{2}}Q}
[ D , Q ¯ ] = 1 2 Q ¯ {\displaystyle =-{\frac {1}{2}}{\overline {Q}}}
[ D , S ] = 1 2 S {\displaystyle ={\frac {1}{2}}S}
[ D , S ¯ ] = 1 2 S ¯ {\displaystyle ={\frac {1}{2}}{\overline {S}}}
[ P , Q ] = [ P , Q ¯ ] = 0 {\displaystyle ==0}
[ K , S ] = [ K , S ¯ ] = 0 {\displaystyle ==0}

Superconformal algebra in 2D

Main article: super Virasoro algebra

There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.

See also

References

  1. West, P. C. (2002). "Introduction to Rigid Supersymmetric Theories". Confinement, Duality, and Non-Perturbative Aspects of QCD. NATO Science Series: B. Vol. 368. pp. 453–476. arXiv:hep-th/9805055. doi:10.1007/0-306-47056-X_17. ISBN 0-306-45826-8. S2CID 119413468.
  2. Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics. 58: 1–548. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G.
Supersymmetry
General topics
Supermathematics
Concepts
Theorems
Field theories
Supergravity
Superpartners
Researchers
String theory
Background
Theory
String duality
Particles and fields
Branes
Conformal field theory
Gauge theory
Geometry
Supersymmetry
Holography
M-theory
String theorists


Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: