Misplaced Pages

TGF beta 1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from TGF β1) Protein-coding gene in the species Homo sapiens
TGFB1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1KLA, 1KLC, 1KLD, 3KFD, 4KV5

Identifiers
AliasesTGFB1, CED, DPD1, LAP, TGFB, TGFbeta, transforming growth factor beta 1, IBDIMDE, TGF-beta1
External IDsOMIM: 190180; MGI: 98725; HomoloGene: 540; GeneCards: TGFB1; OMA:TGFB1 - orthologs
Gene location (Human)
Chromosome 19 (human)
Chr.Chromosome 19 (human)
Chromosome 19 (human)Genomic location for TGFB1Genomic location for TGFB1
Band19q13.2Start41,301,587 bp
End41,353,922 bp
Gene location (Mouse)
Chromosome 7 (mouse)
Chr.Chromosome 7 (mouse)
Chromosome 7 (mouse)Genomic location for TGFB1Genomic location for TGFB1
Band7 A3|7 13.98 cMStart25,386,427 bp
End25,404,502 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • granulocyte

  • monocyte

  • stromal cell of endometrium

  • ascending aorta

  • Descending thoracic aorta

  • right coronary artery

  • spleen

  • right lung

  • canal of the cervix

  • blood
Top expressed in
  • molar

  • tibiofemoral joint

  • stroma of bone marrow

  • granulocyte

  • calvaria

  • mesenteric lymph nodes

  • spleen

  • lower jaw

  • thymus

  • body of femur
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

7040

21803

Ensembl

ENSG00000105329

ENSMUSG00000002603

UniProt

P01137

P04202

RefSeq (mRNA)

NM_000660

NM_011577

RefSeq (protein)

NP_000651

NP_035707

Location (UCSC)Chr 19: 41.3 – 41.35 MbChr 7: 25.39 – 25.4 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation, and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.

Function

See also: TGF beta signaling pathway

TGF-β is a multifunctional set of peptides that controls proliferation, differentiation, and other functions in many cell types. TGF-β acts synergistically with transforming growth factor-alpha (TGF-α) in inducing transformation. It also acts as a negative autocrine growth factor. Dysregulation of TGF-β activation and signaling may result in apoptosis. Many cells synthesize TGF-β and almost all of them have specific receptors for this peptide. TGF-β1, TGF-β2, and TGF-β3 all function through the same receptor signaling systems.

TGF-β1 was first identified in human platelets as a protein with a molecular mass of 25 kilodaltons with a potential role in wound healing. It was later characterized as a large protein precursor (containing 390 amino acids) that was proteolytically processed to produce a mature peptide of 112 amino acids.

TGF-β1 plays an important role in controlling the immune system, and shows different activities on different types of cell, or cells at different developmental stages. Most immune cells (or leukocytes) secrete TGF-β1.

T cells

Some T cells (e.g. regulatory T cells) release TGF-β1 to inhibit the actions of other T cells. Specifically, TGF-β1 prevents the interleukin(IL)-1- & interleukin-2-dependent proliferation in activated T cells, as well as the activation of quiescent helper T cells and cytotoxic T cells. Similarly, TGF-β1 can inhibit the secretion and activity of many other cytokines including interferon-γ, tumor necrosis factor-alpha (TNF-α), and various interleukins. It can also decrease the expression levels of cytokine receptors, such as the IL-2 receptor to down-regulate the activity of immune cells. However, TGF-β1 can also increase the expression of certain cytokines in T cells and promote their proliferation, particularly if the cells are immature.

B cells

TGF-β1 has similar effects on B cells that also vary according to the differentiation state of the cell. It inhibits proliferation, stimulates apoptosis of B cells, and controls the expression of antibody, transferrin and MHC class II proteins on immature and mature B cells.

Myeloid cells

The effects of TGF-β1 on macrophages and monocytes are predominantly suppressive; this cytokine can inhibit the proliferation of these cells and prevent their production of reactive oxygen (e.g. superoxide (O2)) and nitrogen (e.g. nitric oxide (NO)) intermediates. However, as with other cell types, TGF-β1 can also have the opposite effect on cells of myeloid origin. For example, TGF-β1 acts as a chemoattractant, directing an immune response to certain pathogens. Likewise, macrophages and monocytes respond to low levels of TGF-β1 in a chemotactic manner. Furthermore, the expression of monocytic cytokines (such as interleukin(IL)-1α, IL-1β, and TNF-α), and macrophage's phagocytic can be increased by the action of TGF-β1.

TGF-β1 reduces the efficacy of the MHC II in astrocytes and dendritic cells, which in turn decreases the activation of appropriate helper T cell populations.

Interactions

TGF beta 1 has been shown to interact with:

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000105329Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000002603Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ghadami M, Makita Y, Yoshida K, Nishimura G, Fukushima Y, Wakui K, Ikegawa S, Yamada K, Kondo S, Niikawa N, Tomita Ha (January 2000). "Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3". Am. J. Hum. Genet. 66 (1): 143–7. doi:10.1086/302728. PMC 1288319. PMID 10631145.
  6. Vaughn SP, Broussard S, Hall CR, Scott A, Blanton SH, Milunsky JM, Hecht JT (May 2000). "Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region". Genomics. 66 (1): 119–21. doi:10.1006/geno.2000.6192. PMID 10843814.
  7. "Entrez Gene: TGFB1 transforming growth factor, beta 1".
  8. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983). "Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization". J. Biol. Chem. 258 (11): 7155–60. doi:10.1016/S0021-9258(18)32345-7. PMID 6602130.
  9. Custo, S; Baron, B; Felice, A; Seria, E (5 July 2022). "A comparative profile of total protein and six angiogenically-active growth factors in three platelet products". GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW. 11 (Doc06): Doc06. doi:10.3205/iprs000167. PMC 9284722. PMID 35909816.
  10. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985). "Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells". Nature. 316 (6030): 701–5. Bibcode:1985Natur.316..701D. doi:10.1038/316701a0. PMID 3861940. S2CID 4245501.
  11. ^ Letterio JJ, Roberts AB (1998). "Regulation of immune responses by TGF-beta". Annu. Rev. Immunol. 16: 137–61. doi:10.1146/annurev.immunol.16.1.137. PMID 9597127.
  12. Wahl SM, Hunt DA, Wong HL, Dougherty S, McCartney-Francis N, Wahl LM, Ellingsworth L, Schmidt JA, Hall G, Roberts AB (1988). "Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation". J. Immunol. 140 (9): 3026–32. doi:10.4049/jimmunol.140.9.3026. PMID 3129508. S2CID 35425214.
  13. Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garssen J, Bruijnzeel-Koomen CA, Knol EF, van Hoffen E (2003). "Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response". Int. Immunol. 15 (12): 1495–504. doi:10.1093/intimm/dxg147. PMID 14645158.
  14. Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO (1997). "Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells". Immunol. Invest. 26 (4): 459–72. doi:10.3109/08820139709022702. PMID 9246566.
  15. ^ Wahl SM, Wen J, Moutsopoulos N (2006). "TGF-beta: a mobile purveyor of immune privilege". Immunol. Rev. 213: 213–27. doi:10.1111/j.1600-065X.2006.00437.x. PMID 16972906. S2CID 84309271.
  16. Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J (March 2019). "Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage". Prog. Neurobiol. 178: 101610. doi:10.1016/j.pneurobio.2019.03.003. PMID 30923023. S2CID 85495400.
  17. ^ Lebman DA, Edmiston JS (1999). "The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes". Microbes Infect. 1 (15): 1297–304. doi:10.1016/S1286-4579(99)00254-3. PMID 10611758.
  18. Rodríguez LS, Narváez CF, Rojas OL, Franco MA, Ángel J (2012-01-01). "Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response". Cellular Immunology. 272 (2): 154–61. doi:10.1016/j.cellimm.2011.10.017. PMID 22082567.
  19. Dong Y, Tang L, Letterio JJ, Benveniste EN (July 2001). "The Smad3 protein is involved in TGF-beta inhibition of class II transactivator and class II MHC expression". Journal of Immunology. 167 (1): 311–9. doi:10.4049/jimmunol.167.1.311. PMID 11418665.
  20. Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E (September 1994). "Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta". Biochem. J. 302 (2): 527–34. doi:10.1042/bj3020527. PMC 1137259. PMID 8093006.
  21. Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (July 1998). "Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen". Arch. Biochem. Biophys. 355 (2): 241–8. doi:10.1006/abbi.1998.0720. PMID 9675033.
  22. Takeuchi Y, Kodama Y, Matsumoto T (Dec 1994). "Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity". J. Biol. Chem. 269 (51): 32634–8. doi:10.1016/S0021-9258(18)31681-8. PMID 7798269.
  23. Choy L, Derynck R (November 1998). "The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response". J. Biol. Chem. 273 (47): 31455–62. doi:10.1074/jbc.273.47.31455. PMID 9813058.
  24. Saharinen J, Keski-Oja J (August 2000). "Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta". Mol. Biol. Cell. 11 (8): 2691–704. doi:10.1091/mbc.11.8.2691. PMC 14949. PMID 10930463.
  25. Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R (November 1993). "Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science. 262 (5135): 900–2. Bibcode:1993Sci...262..900E. doi:10.1126/science.8235612. PMID 8235612.
  26. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (March 2000). "Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis". Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2626–31. Bibcode:2000PNAS...97.2626O. doi:10.1073/pnas.97.6.2626. PMC 15979. PMID 10716993.
  27. McGonigle S, Beall MJ, Feeney EL, Pearce EJ (February 2001). "Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors". FEBS Lett. 490 (1–2): 65–9. doi:10.1016/s0014-5793(01)02133-0. PMID 11172812. S2CID 84710903.

Further reading

External links

  • Overview of all the structural information available in the PDB for UniProt: P01137 (Transforming growth factor beta-1) at the PDBe-KB.


PDB gallery
  • 1kla: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 1-17 OF 33 STRUCTURES 1kla: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 1-17 OF 33 STRUCTURES
  • 1klc: SOLUTION STRUCTURE OF TGF-B1, NMR, MINIMIZED AVERAGE STRUCTURE 1klc: SOLUTION STRUCTURE OF TGF-B1, NMR, MINIMIZED AVERAGE STRUCTURE
  • 1kld: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 18-33 OF 33 STRUCTURES 1kld: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 18-33 OF 33 STRUCTURES
Cell signaling: TGFβ signaling pathway
TGF beta superfamily of ligands
Ligand of ACVR or TGFBR
Ligand of BMPR
TGF beta receptors
(Activin, BMP, family)
TGFBR1:
TGFBR2:
TGFBR3:
Transducers/SMAD
Ligand inhibitors
Coreceptors
Other
Growth factors
Fibroblast
FGF receptor ligands:
KGF
FGF homologous factors:
hormone-like: FGF15/19
EGF-like domain
TGFβ pathway
Insulin/IGF/
Relaxin family
Insulin and Insulin-like growth factor
Relaxin family peptide hormones
Platelet-derived
Vascular endothelial
Other
TGFβ receptor superfamily modulators
Type I
ALK1 (ACVRL1)
ALK2 (ACVR1A)
ALK3 (BMPR1A)
ALK4 (ACVR1B)
ALK5 (TGFβR1)
ALK6 (BMPR1B)
ALK7 (ACVR1C)
Type II
TGFβR2
BMPR2
ACVR2A (ACVR2)
ACVR2B
AMHR2 (AMHR)
Type III
TGFβR3 (β-glycan)
Unsorted
Categories: