This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant , , is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and Biedenharn. Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties and in online tables.
Formulation
The Clebsch–Gordan coefficients are the solutions to
Explicitly:
The summation is extended over all integer k for which the argument of every factorial is nonnegative.
For brevity, solutions with m < 0 and j1 < j2 are omitted. They may be calculated using the simple relations
and
Specific values
The Clebsch–Gordan coefficients for j values less than or equal to 5/2 are given below.
j2 = 0
When j2 = 0, the Clebsch–Gordan coefficients are given by .
j1 = 1/2, j2 = 1/2
jm1, m2 | 1 |
---|---|
1/2, 1/2 |
jm1, m2 | 1 |
---|---|
−1/2, −1/2 |
jm1, m2 | 1 | 0 |
---|---|---|
1/2, −1/2 | ||
−1/2, 1/2 |
j1 = 1, j2 = 1/2
jm1, m2 | 3/2 |
---|---|
1, 1/2 |
jm1, m2 | 3/2 | 1/2 |
---|---|---|
1, −1/2 | ||
0, 1/2 |
j1 = 1, j2 = 1
jm1, m2 | 2 |
---|---|
1, 1 |
jm1, m2 | 2 | 1 |
---|---|---|
1, 0 | ||
0, 1 |
jm1, m2 | 2 | 1 | 0 |
---|---|---|---|
1, −1 | |||
0, 0 | |||
−1, 1 |
j1 = 3/2, j2 = 1/2
jm1, m2 | 2 |
---|---|
3/2, 1/2 |
jm1, m2 | 2 | 1 |
---|---|---|
3/2, −1/2 | ||
1/2, 1/2 |
jm1, m2 | 2 | 1 |
---|---|---|
1/2, −1/2 | ||
−1/2, 1/2 |
j1 = 3/2, j2 = 1
jm1, m2 | 5/2 |
---|---|
3/2, 1 |
jm1, m2 | 5/2 | 3/2 |
---|---|---|
3/2, 0 | ||
1/2, 1 |
jm1, m2 | 5/2 | 3/2 | 1/2 |
---|---|---|---|
3/2, −1 | |||
1/2, 0 | |||
−1/2, 1 |
j1 = 3/2, j2 = 3/2
jm1, m2 | 3 |
---|---|
3/2, 3/2 |
jm1, m2 | 3 | 2 |
---|---|---|
3/2, 1/2 | ||
1/2, 3/2 |
jm1, m2 | 3 | 2 | 1 |
---|---|---|---|
3/2, −1/2 | |||
1/2, 1/2 | |||
−1/2, 3/2 |
jm1, m2 | 3 | 2 | 1 | 0 |
---|---|---|---|---|
3/2, −3/2 | ||||
1/2, −1/2 | ||||
−1/2, 1/2 | ||||
−3/2, 3/2 |
j1 = 2, j2 = 1/2
jm1, m2 | 5/2 |
---|---|
2, 1/2 |
jm1, m2 | 5/2 | 3/2 |
---|---|---|
2, −1/2 | ||
1, 1/2 |
jm1, m2 | 5/2 | 3/2 |
---|---|---|
1, −1/2 | ||
0, 1/2 |
j1 = 2, j2 = 1
jm1, m2 | 3 |
---|---|
2, 1 |
jm1, m2 | 3 | 2 |
---|---|---|
2, 0 | ||
1, 1 |
jm1, m2 | 3 | 2 | 1 |
---|---|---|---|
2, −1 | |||
1, 0 | |||
0, 1 |
jm1, m2 | 3 | 2 | 1 |
---|---|---|---|
1, −1 | |||
0, 0 | |||
−1, 1 |
j1 = 2, j2 = 3/2
jm1, m2 | 7/2 |
---|---|
2, 3/2 |
jm1, m2 | 7/2 | 5/2 |
---|---|---|
2, 1/2 | ||
1, 3/2 |
jm1, m2 | 7/2 | 5/2 | 3/2 |
---|---|---|---|
2, −1/2 | |||
1, 1/2 | |||
0, 3/2 |
jm1, m2 | 7/2 | 5/2 | 3/2 | 1/2 |
---|---|---|---|---|
2, −3/2 | ||||
1, −1/2 | ||||
0, 1/2 | ||||
−1, 3/2 |
j1 = 2, j2 = 2
jm1, m2 | 4 |
---|---|
2, 2 |
jm1, m2 | 4 | 3 |
---|---|---|
2, 1 | ||
1, 2 |
jm1, m2 | 4 | 3 | 2 |
---|---|---|---|
2, 0 | |||
1, 1 | |||
0, 2 |
jm1, m2 | 4 | 3 | 2 | 1 |
---|---|---|---|---|
2, −1 | ||||
1, 0 | ||||
0, 1 | ||||
−1, 2 |
jm1, m2 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|
2, −2 | |||||
1, −1 | |||||
0, 0 | |||||
−1, 1 | |||||
−2, 2 |
j1 = 5/2, j2 = 1/2
jm1, m2 | 3 |
---|---|
5/2, 1/2 |
jm1, m2 | 3 | 2 |
---|---|---|
5/2, −1/2 | ||
3/2, 1/2 |
jm1, m2 | 3 | 2 |
---|---|---|
3/2, −1/2 | ||
1/2, 1/2 |
jm1, m2 | 3 | 2 |
---|---|---|
1/2, −1/2 | ||
−1/2, 1/2 |
j1 = 5/2, j2 = 1
jm1, m2 | 7/2 |
---|---|
5/2, 1 |
jm1, m2 | 7/2 | 5/2 |
---|---|---|
5/2, 0 | ||
3/2, 1 |
jm1, m2 | 7/2 | 5/2 | 3/2 |
---|---|---|---|
5/2, −1 | |||
3/2, 0 | |||
1/2, 1 |
jm1, m2 | 7/2 | 5/2 | 3/2 |
---|---|---|---|
3/2, −1 | |||
1/2, 0 | |||
−1/2, 1 |
j1 = 5/2, j2 = 3/2
jm1, m2 | 4 |
---|---|
5/2, 3/2 |
jm1, m2 | 4 | 3 |
---|---|---|
5/2, 1/2 | ||
3/2, 3/2 |
jm1, m2 | 4 | 3 | 2 |
---|---|---|---|
5/2, −1/2 | |||
3/2, 1/2 | |||
1/2, 3/2 |
jm1, m2 | 4 | 3 | 2 | 1 |
---|---|---|---|---|
5/2, −3/2 | ||||
3/2, −1/2 | ||||
1/2, 1/2 | ||||
−1/2, 3/2 |
jm1, m2 | 4 | 3 | 2 | 1 |
---|---|---|---|---|
3/2, −3/2 | ||||
1/2, −1/2 | ||||
−1/2, 1/2 | ||||
−3/2, 3/2 |
j1 = 5/2, j2 = 2
jm1, m2 | 9/2 |
---|---|
5/2, 2 |
jm1, m2 | 9/2 | 7/2 |
---|---|---|
5/2, 1 | ||
3/2, 2 |
jm1, m2 | 9/2 | 7/2 | 5/2 |
---|---|---|---|
5/2, 0 | |||
3/2, 1 | |||
1/2, 2 |
jm1, m2 | 9/2 | 7/2 | 5/2 | 3/2 |
---|---|---|---|---|
5/2, −1 | ||||
3/2, 0 | ||||
1/2, 1 | ||||
−1/2, 2 |
jm1, m2 | 9/2 | 7/2 | 5/2 | 3/2 | 1/2 |
---|---|---|---|---|---|
5/2, −2 | |||||
3/2, −1 | |||||
1/2, 0 | |||||
−1/2, 1 | |||||
−3/2, 2 |
j1 = 5/2, j2 = 5/2
jm1, m2 | 5 |
---|---|
5/2, 5/2 |
jm1, m2 | 5 | 4 |
---|---|---|
5/2, 3/2 | ||
3/2, 5/2 |
jm1, m2 | 5 | 4 | 3 |
---|---|---|---|
5/2, 1/2 | |||
3/2, 3/2 | |||
1/2, 5/2 |
jm1, m2 | 5 | 4 | 3 | 2 |
---|---|---|---|---|
5/2, −1/2 | ||||
3/2, 1/2 | ||||
1/2, 3/2 | ||||
−1/2, 5/2 |
jm1, m2 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|
5/2, −3/2 | |||||
3/2, −1/2 | |||||
1/2, 1/2 | |||||
−1/2, 3/2 | |||||
−3/2, 5/2 |
jm1, m2 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|
5/2, −5/2 | ||||||
3/2, −3/2 | ||||||
1/2, −1/2 | ||||||
−1/2, 1/2 | ||||||
−3/2, 3/2 | ||||||
−5/2, 5/2 |
SU(N) Clebsch–Gordan coefficients
Algorithms to produce Clebsch–Gordan coefficients for higher values of and , or for the su(N) algebra instead of su(2), are known. A web interface for tabulating SU(N) Clebsch–Gordan coefficients is readily available.
References
- Baird, C.E.; L. C. Biedenharn (October 1964). "On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SUn". J. Math. Phys. 5 (12): 1723–1730. Bibcode:1964JMP.....5.1723B. doi:10.1063/1.1704095.
- Hagiwara, K.; et al. (July 2002). "Review of Particle Properties" (PDF). Phys. Rev. D. 66 (1): 010001. Bibcode:2002PhRvD..66a0001H. doi:10.1103/PhysRevD.66.010001. Retrieved 2007-12-20.
- Mathar, Richard J. (2006-08-14). "SO(3) Clebsch Gordan coefficients" (text). Retrieved 2012-10-15.
- (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN 0-387-95330-2.
- Weissbluth, Mitchel (1978). Atoms and molecules. ACADEMIC PRESS. p. 28. ISBN 0-12-744450-5. Table 1.4 resumes the most common.
- Alex, A.; M. Kalus; A. Huckleberry; J. von Delft (February 2011). "A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch–Gordan coefficients". J. Math. Phys. 82: 023507. arXiv:1009.0437. Bibcode:2011JMP....52b3507A. doi:10.1063/1.3521562.
External links
- Online, Java-based Clebsch–Gordan Coefficient Calculator by Paul Stevenson
- Other formulae for Clebsch–Gordan coefficients.
- Web interface for tabulating SU(N) Clebsch–Gordan coefficients