Misplaced Pages

Technetium hexafluoride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Technetium(VI) fluoride)
Technetium(VI) fluoride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
PubChem CID
InChI
  • InChI=1S/6FH.Tc/h6*1H;/q;;;;;;+6/p-6Key: PRVOBRCYHYXCMU-UHFFFAOYSA-H
SMILES
  • F(F)(F)(F)(F)F
Properties
Chemical formula TcF6
Molar mass 212 g/mol (Tc)
Appearance golden-yellow crystals
Density 3,58 g/cm (−140 °C), solid
Melting point 37.4 °C (99.3 °F; 310.5 K)
Boiling point 55.3 °C (131.5 °F; 328.4 K)
Structure
Crystal structure cubic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Technetium hexafluoride or technetium(VI) fluoride (TcF6) is a yellow inorganic compound with a low melting point. It was first identified in 1961. In this compound, technetium has an oxidation state of +6, the highest oxidation state found in the technetium halides. In this respect, technetium differs from rhenium, which forms a heptafluoride, ReF7. Technetium hexafluoride occurs as an impurity in uranium hexafluoride, as technetium is a fission product of uranium (spontaneous fission in natural uranium, possible contamination from induced fission inside the reactor in reprocessed uranium). The fact that the boiling point of the hexafluorides of uranium and technetium are very close to each other presents a problem in using fluoride volatility in nuclear reprocessing.

Preparation

Technetium hexafluoride is prepared by heating technetium metal with an excess of F2 at 400 °C.

Tc + 3 F
2 → TcF
6

Description

Technetium hexafluoride is a golden-yellow solid at room temperature. Its melting point is 37.4 °C and its boiling point is 55.3 °C.

Technetium hexafluoride undergoes a solid phase transition at −4.54 °C. Above this temperature (measured at 10 °C), the solid structure is cubic. Lattice parameters are a = 6.16 Å. There are two formula units (in this case, discrete molecules) per unit cell, giving a density of 3.02 g·cm. Below this temperature (measured at −19 °C), the solid structure is orthorhombic space group Pnma. Lattice parameters are a = 9.55 Å, b = 8.74 Å, and c = 5.02 Å. There are four formula units (in this case, discrete molecules) per unit cell, giving a density of 3.38 g·cm. At −140 °C, the solid structure is still orthothombic, but the lattice parameters are now a = 9.360 Å, b = 8.517 Å, and c = 4.934 Å, giving a density of 3.58 g·cm.

The TcF6 molecule itself (the form important for the liquid or gas phase) has octahedral molecular geometry, which has point group (Oh). The Tc–F bond length is 1.812 Å. Its magnetic moment has been measured to be 0.45 μB.

Properties

Physical

TcF6 is octahedral, as shown by infrared and Raman spectra. Its low-temperature orthorhombic form converts to the higher symmetry body-centred cubic form at room temperature, like other metal hexafluorides such as RhF6 and OsF6. Preliminary measurements of magnetic moment yield a value of 0.45 μB, which is lower than expected for a d octahedral compound.

Chemical

TcF6 reacts with alkaline chlorides in iodine pentafluoride (IF5) solution to form hexafluorotechnetates. TcF6 disproportionates on hydrolysis with aqueous NaOH to form a black precipitate of TcO2. In hydrogen fluoride solution, TcF6 reacts with hydrazinium fluoride to yield N2H6TcF6 or N2H6(TcF6)2.

References

  1. ^ CRC Handbook of Chemistry and Physics, 90th Edition, CRC Press, Boca Raton, Florida, 2009, ISBN 978-1-4200-9084-0, Section 4, Physical Constants of Inorganic Compounds, p. 4-93.
  2. ^ Drews, T.; Supeł, J.; Hagenbach, A.; Seppelt, K. (2006). "Solid State Molecular Structures of Transition Metal Hexafluorides". Inorganic Chemistry. 45 (9): 3782–3788. doi:10.1021/ic052029f. PMID 16634614.
  3. ^ Selig, H.; Chernick, C.L.; Malm, J.G. (1961). "The Preparation and Properties of TcF6". Journal of Inorganic and Nuclear Chemistry. 19 (3–4): 377–381. doi:10.1016/0022-1902(61)80132-2.
  4. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  5. Selig, H.; Cafasso, F. A.; Gruen, D. M.; Malm, J. G. (1962). "Magnetic Susceptibility of ReF6". Journal of Chemical Physics. 36 (12): 3440. Bibcode:1962JChPh..36.3440S. doi:10.1063/1.1732477.
  6. Howard H. Claassen; Henry Selig & John G. Malm (1962). "Vibrational Spectra of MoF6 and TcF6". Journal of Chemical Physics. 36 (11): 2888–2890. Bibcode:1962JChPh..36.2888C. doi:10.1063/1.1732396.
  7. Howard H. Claassen; Gordon L. Goodman; John H. Holloway & Henry Selig (1970). "Raman Spectra of MoF6, TcF6, ReF6, UF6, SF6, SeF6, and TeF6 in the Vapor State". Journal of Chemical Physics. 53 (1): 341–348. Bibcode:1970JChPh..53..341C. doi:10.1063/1.1673786.
  8. Siegel S, Northrop DA (1966). "X-Ray Diffraction Studies of Some Transition Metal Hexafluorides". Inorganic Chemistry. 5 (12): 2187–2188. doi:10.1021/ic50046a025.
  9. Selig, H; Cafasso, F A.; Gruen, D M.; Malm, J G. (1962). "Magnetic Susceptibility of ReF6". Journal of Chemical Physics. 36 (12): 3440–3444. Bibcode:1962JChPh..36.3440S. doi:10.1063/1.1732477.
  10. Edwards, A. J.; Hugill, D.; Peacock, R. D. (1963). "New Fluorine Compounds of Technetium". Nature. 200 (4907): 672. Bibcode:1963Natur.200..672E. doi:10.1038/200672a0. S2CID 4259399.
  11. D. Hugill & R. D. Peacock (1966). "Some quinquevalent fluorotechnetates". Journal of the Chemical Society A: 1339–1341. doi:10.1039/J19660001339.
  12. Frlec B; Selig H & Hyman H.H (1967). "Hydrazinium(+2) Hexafluorometalates(IV) and -(V) in the 4d and 5d Transition Series". Inorganic Chemistry. 6 (10): 1775–1783. doi:10.1021/ic50056a004.
Binary hexafluorides
Known binary hexafluorides
Chalcogen binary hexafluorides
Noble gas binary hexafluorides
Transition metal binary hexafluorides
Actinide binary hexafluorides
Predicted binary hexafluorides
Noble gas binary hexafluorides
Transition metal binary hexafluorides
Actinide binary hexafluorides
Technetium compounds
Technetium(II)
Technetium(III)
Technetium(IV)
Technetium(V)
Technetium(VI)
Technetium(VII)
Fluorine compounds
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF−6, AsF−6, SbF−6 compounds
AlF2−5, AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6, GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Chemical formulas
Categories: