Misplaced Pages

Tetrabromobisphenol A diglycidyl ether

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Tetrabromobisphenol A diglycidyl ether
Names
IUPAC name 2-propan-2-yl]phenoxy]methyl]oxirane
Identifiers
CAS Number
3D model (JSmol)
ChEMBL
ChemSpider
EC Number
  • 221-346-0
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C21H20Br4O4/c1-21(2,11-3-15(22)19(16(23)4-11)28-9-13-7-26-13)12-5-17(24)20(18(25)6-12)29-10-14-8-27-14/h3-6,13-14H,7-10H2,1-2H3Key: ZJRAAAWYHORFHN-UHFFFAOYSA-N
SMILES
  • CC(C)(C1=CC(=C(C(=C1)Br)OCC2CO2)Br)C3=CC(=C(C(=C3)Br)OCC4CO4)Br
Properties
Chemical formula C21H20Br4O4
Molar mass 656.003 g·mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Tetrabromobisphenol A diglycidyl ether is an epoxy resin consisting of tetrabromobisphenol A with ether linkages to two epichlorohydrin groups. An alernative structural comparison is as brominated form of bisphenol A diglycidyl ether. It is a brominated aromatic chemical used principally for giving flame retardant properties to materials. It is TSCA and REACH registered and has the molecular formula C21H20Br4O4. The IUPAC name is 2-{phenyl}propan-2-yl)phenoxy]methyl}oxirane.

Synthesis

A method of synthesis is to take tetrabromobisphenol A and react with epichlorohydrin using a base to form the halohydrin. This species is then further reacted with sodium hydroxide to form the diglycidyl ether. Higher molecular weight epoxy resins with bromine atoms along the chain maybe synthesized by reacting standard epoxy resin with tetrabromobisphenol A in a technique called advancement.

Uses

Its primary use is as a flame retardant in various materials including composites. It finds extensive use in electronic applications including printed circuit boards and general packaging for electronic materials.

Toxicity

The toxicity has been studied extensively, and even dusts containing the material have been studied for safer reuse and recovery. The material and its analogs have likewise had their toxicological properties studied. It is used as a control in studies evaluating the use of non-halogenated flame retardants.

Further reading

References

  1. PubChem. "Tetrabromobisphenol A diglycidyl ether". pubchem.ncbi.nlm.nih.gov. Retrieved 2024-11-19.
  2. "Registration Dossier - ECHA". echa.europa.eu. Retrieved 2024-11-19.
  3. "ECHA CHEM". chem.echa.europa.eu. Retrieved 2024-11-19.
  4. Fayaz, Iram; Peerzada, Ghulam Mustafa; Ganaie, Nadeem Bashir (2021-12-27). "Comparative Study of Different Methods of Synthesis and Their Effect on the Thermomechanical Properties of a Halogenated Epoxy-Based Flame-Retardant Resin". ACS Omega. 7 (1): 1035–1047. doi:10.1021/acsomega.1c05626. ISSN 2470-1343. PMC 8756803. PMID 35036767.
  5. Li, Botao. "Synthesis of the Diglycidyl Ether of Brominated Neopentyl Glycol and Properties of the Resulting Cured Material". SSRN 4710385.
  6. Barontini, Federica; Cozzani, Valerio; Petarca, Luigi (2000-04-01). "Calorimetric and Kinetic Analysis of the Diglycidyl Ether of the Bisphenol A/Tetrabromobisphenol A Reaction for the Production of Linear Brominated Epoxy Resins". Industrial & Engineering Chemistry Research. 39 (4): 855–863. doi:10.1021/ie9908130. ISSN 0888-5885.
  7. Rafique, Irum; Kausar, Ayesha; Muhammad, Bakhtiar (2017-02-11). "Fabrication and Characterization of High-Performance Diglycidyl Ether of Bisphenol-A/Tetrabromobisphenol-A Blend Reinforced with Multiwalled Carbon Nanotube Composite". Polymer-Plastics Technology and Engineering. 56 (3): 321–333. doi:10.1080/03602559.2016.1233255. ISSN 0360-2559.
  8. Ziraroui. "Quantum Chemical investigation of electronic effect impact on epoxies thermal properties QSPR model of thermal degradation of some diglycidyl ether bisphenol derivatives diamine systems".
  9. Wang, Chun-Shan; Berman, J. R.; Walker, L. L.; Mendoza, A. (1991-10-05). "Meta-bromobiphenol epoxy resins: Applications in electronic packaging and printed circuit board". Journal of Applied Polymer Science. 43 (7): 1315–1321. doi:10.1002/app.1991.070430713. ISSN 0021-8995.
  10. Gu, Hongbo; Guo, Jiang; He, Qingliang; Tadakamalla, Sruthi; Zhang, Xi; Yan, Xingru; Huang, Yudong; Colorado, Henry A.; Wei, Suying; Guo, Zhanhu (2013-06-12). "Flame-Retardant Epoxy Resin Nanocomposites Reinforced with Polyaniline-Stabilized Silica Nanoparticles". Industrial & Engineering Chemistry Research. 52 (23): 7718–7728. doi:10.1021/ie400275n. ISSN 0888-5885.
  11. P. M., Visakh (2015). Arao, Yoshihiko (ed.). Flame retardants: polymer blends, composites and nanocomposites. Engineering materials. Cham Heidelberg New York London: Springer. ISBN 978-3-319-03466-9.
  12. Grabda, Mariusz; Oleszek, Sylwia; Shibata, Etsuro; Nakamura, Takashi (2014-08-15). "Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA". Journal of Hazardous Materials. 278: 25–33. Bibcode:2014JHzM..278...25G. doi:10.1016/j.jhazmat.2014.05.084. ISSN 0304-3894. PMID 24945793.
  13. Ren, Xiao-Min; Yao, Linlin; Xue, Qiao; Shi, Jianbo; Zhang, Qinghua; Wang, Pu; Fu, Jianjie; Zhang, Aiqian; Qu, Guangbo; Jiang, Guibin (October 2020). "Binding and Activity of Tetrabromobisphenol A Mono-Ether Structural Analogs to Thyroid Hormone Transport Proteins and Receptors". Environmental Health Perspectives. 128 (10). Bibcode:2020EnvHP.128j7008R. doi:10.1289/EHP6498. ISSN 0091-6765. PMC 7584160. PMID 33095664.
  14. Kettrup, A. A.; Lenoir, D.; Thumm, W.; Kampke-Thiel, K.; Beck, B. (1996-11-01). "Evaluation of ecotoxicological properties of new duroplastic materials without halogen as flame retardant". Polymer Degradation and Stability. Fire Retardant Polymers. 54 (2): 175–180. doi:10.1016/S0141-3910(96)00041-9. ISSN 0141-3910.
Categories: