Thomas C. Bruice | |
---|---|
Born | (1925-08-25)August 25, 1925 |
Died | February 15, 2019(2019-02-15) (aged 93) |
Nationality | American |
Education | University of Southern California (B.S., Ph.D.) |
Known for | Use of imidazole-catalysed hydrolysis of p-nitrophenyl acetate as a model system |
Awards | NAS Award in Chemical Sciences |
Scientific career | |
Fields | Bioorganic chemistry, enzyme catalysis |
Institutions | University of California, Los Angeles, Yale University, Johns Hopkins University, Cornell University, University of California, Santa Barbara |
Thomas C. Bruice (August 25, 1925 – February 15, 2019) was a professor of chemistry and biochemistry at University of California, Santa Barbara. He was elected to the National Academy of Sciences in 1974. He was a pioneering researcher in the area of chemical biology, and is one of the 50 most cited chemists.
Education
Bruice earned his B.S. at the University of Southern California, and returned there after his service as a Marine medical corpsman during the World War II island campaigns in the South Pacific, and obtained his Ph.D. there. He carried out post-doctoral work at University of California, Los Angeles. He has been a faculty member at Yale University, Johns Hopkins University, and Cornell University. He joined the faculty at the University of California, Santa Barbara in 1964.
Research
Papers
Bruice published more than 600 papers during his career. He saw himself as a bioorganic chemist rather than as a biochemist, and that description is very apt for his work, as most of the molecules that he studied were natural products such as thyroxine. In addition, he made important contributions to understanding enzyme catalysis, and he pioneered the use of imidazole-catalysed hydrolysis of p-nitrophenyl acetate as a model system. (This system has the practical advantage that it is very convenient to follow the hydrolysis spectrophotometically.) He also stied a similar reaction catalysed by the enzyme ribonuclease. More generally, he made a study of mechanisms for chymotrypsin catalysis., and in particular the "charge-relay" system as a way of understanding the role of the catalytic triad that exists in such enzymes. He considered that "orbital steering" was a new name for a well established observation.
Reviews
Bruice wrote reviews on a number of topics, including the use of small molecules to understand catalysis and the chemistry of flavins, and on enzyme catalysis in general.
Books
Bruice collaborated with Stephen Benkovic to write a two-volume work on Bioorganic Mechanisms that helped establish this field.
Awards and honors
- 2008 - Linus Pauling Award
- 2005 - NAS Award in Chemical Sciences
- 1978 - Tolman Award
References
- ^ Benkovic, Stephen J. (2019). "Thomas Bruice (1925–2019)". Proceedings of the National Academy of Sciences. 116 (45): 22418–22419. Bibcode:2019PNAS..11622418B. doi:10.1073/pnas.1913522116. PMC 6842622. PMID 31636196.
- ^ "2008 Pauling Award Symposium". The University of British Columbia. 2008. Archived from the original on 4 February 2011. Retrieved 6 January 2011.
- "Dr. Thomas C. Bruice, Bio-Organic Chemistry Pioneer". The LACC Foundation. Archived from the original on 16 December 2010. Retrieved 6 January 2011.
- Bruice, Thomas C.; Kharasch, Norman; Winzler, Richard J. (1956). "A correlation of thyroxine-like activity and chemical structure". Archives of Biochemistry and Biophysics. 62 (2): 305–317. doi:10.1016/0003-9861(56)90129-1. PMID 13328119.
- Bruice, Thomas C.; Schmir, Gaston L. (1956). "The catalysis of the hydrolysis of p-nitrophenyl acetate by imidazole and its derivatives". Archives of Biochemistry and Biophysics. 63 (2): 484–486. doi:10.1016/0003-9861(56)90068-6. PMID 13355478.
- Bruice, Thomas C.; Holmquist, Barton.; Stein, Thomas Peter. (1967). "Reaction of ribonuclease a with o-nitrophenyl hydrogen oxalate". Journal of the American Chemical Society. 89 (16): 4221–4222. doi:10.1021/ja00992a047. PMID 6045612.
- Bruice, T. C. (1961). "The Mechanisms for Chymotrypsin". Proceedings of the National Academy of Sciences. 47 (12): 1924–1928. Bibcode:1961PNAS...47.1924B. doi:10.1073/pnas.47.12.1924. PMC 223243. PMID 13873928.
- Rogers, Gary A.; Bruice, Thomas C. (1974). "Synthesis and evaluation of a model for the so-called charge-relay system of the serine esterases". Journal of the American Chemical Society. 96 (8): 2473–2481. doi:10.1021/ja00815a028. PMID 4833707.
- Bruice, T. C.; Pandit, U. K. (1960). "Intramolecular Models Depicting the Kinetic Importance of "Fit" in Enzymatic Catalysis". Proceedings of the National Academy of Sciences. 46 (4): 402–404. Bibcode:1960PNAS...46..402B. doi:10.1073/pnas.46.4.402. PMC 222851. PMID 16590620.
- Bruice, T. C.; Brown, A.; Harris, D. O. (1971). "On the Concept of Orbital Steering in Catalytic Reactions". Proceedings of the National Academy of Sciences. 68 (3): 658–661. Bibcode:1971PNAS...68..658B. doi:10.1073/pnas.68.3.658. PMC 389011. PMID 16591915.
- Bruice, T. C. (1976). "Some Pertinent Aspects of Mechanism as Determined with Small Molecules". Annual Review of Biochemistry. 45: 331–374. doi:10.1146/annurev.bi.45.070176.001555. PMID 786153.
- Bruice, Thomas C. (1980). "Mechanisms of flavin catalysis". Accounts of Chemical Research. 13 (8): 256–262. doi:10.1021/ar50152a002.
- Bruice, T.C. (1984). "Oxygen-flavin chemistry". Israel Journal of Chemistry. 24 (1): 54–61. doi:10.1002/ijch.198400008.
- Bruice, Thomas C.; Benkovic, Stephen J. (2000). "Chemical Basis for Enzyme Catalysis". Biochemistry. 39 (21): 6267–6274. doi:10.1021/bi0003689. PMID 10828939.
- Bruice, T.C.; Benkovic, S.J. (1966). Bioorganic Mechanisms. New York: Benjamin, Inc.
- "Linus Pauling Medalists". Portland State University. Retrieved 7 January 2011.
- "About the NAS Award in Chemical Sciences". National Academy of Sciences. Retrieved 5 June 2017.
- "Academy Honors 17 for Major Contributions to Science". The National Academy of Sciences. 26 January 2005. Retrieved 7 January 2011.
- "SCALACS Tolman Awards". American Chemical Society. Retrieved 23 April 2014.
External links
Repligen Corporation Award in Chemistry of Biological Processes | |
---|---|
|