Misplaced Pages

Trigonometric integral

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
For simple integrals of trigonometric functions, see List of integrals of trigonometric functions.
Plot of the hyperbolic sine integral function Shi(z) in the complex plane from −2 − 2i to 2 + 2i
Plot of the hyperbolic sine integral function Shi(z) in the complex plane from −2 − 2i to 2 + 2i

Special function defined by an integral
Si(x) (blue) and Ci(x) (green) shown on the same plot.
Integral sine in the complex plane, plotted with a variant of domain coloring.
Integral cosine in the complex plane. Note the branch cut along the negative real axis.

In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

Sine integral

Plot of Si(x) for 0 ≤ x ≤ 8π.
Plot of the cosine integral function Ci(z) in the complex plane from −2 − 2i to 2 + 2i
Plot of the cosine integral function Ci(z) in the complex plane from −2 − 2i to 2 + 2i

The different sine integral definitions are Si ( x ) = 0 x sin t t d t {\displaystyle \operatorname {Si} (x)=\int _{0}^{x}{\frac {\sin t}{t}}\,dt} si ( x ) = x sin t t d t   . {\displaystyle \operatorname {si} (x)=-\int _{x}^{\infty }{\frac {\sin t}{t}}\,dt~.}

Note that the integrand sin ( t ) t {\displaystyle {\frac {\sin(t)}{t}}} is the sinc function, and also the zeroth spherical Bessel function. Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints.

By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞. Their difference is given by the Dirichlet integral, Si ( x ) si ( x ) = 0 sin t t d t = π 2  or  Si ( x ) = π 2 + si ( x )   . {\displaystyle \operatorname {Si} (x)-\operatorname {si} (x)=\int _{0}^{\infty }{\frac {\sin t}{t}}\,dt={\frac {\pi }{2}}\quad {\text{ or }}\quad \operatorname {Si} (x)={\frac {\pi }{2}}+\operatorname {si} (x)~.}

In signal processing, the oscillations of the sine integral cause overshoot and ringing artifacts when using the sinc filter, and frequency domain ringing if using a truncated sinc filter as a low-pass filter.

Related is the Gibbs phenomenon: If the sine integral is considered as the convolution of the sinc function with the heaviside step function, this corresponds to truncating the Fourier series, which is the cause of the Gibbs phenomenon.

Cosine integral

Plot of Ci(x) for 0 < x ≤ 8π

The different cosine integral definitions are Cin ( x ) = 0 x 1 cos t t d t   , {\displaystyle \operatorname {Cin} (x)=\int _{0}^{x}{\frac {1-\cos t}{t}}\,dt~,} Ci ( x ) = x cos t t d t = γ + ln x 0 x 1 cos t t d t    for    | Arg ( x ) | < π   , {\displaystyle \operatorname {Ci} (x)=-\int _{x}^{\infty }{\frac {\cos t}{t}}\,dt=\gamma +\ln x-\int _{0}^{x}{\frac {1-\cos t}{t}}\,dt\qquad ~{\text{ for }}~\left|\operatorname {Arg} (x)\right|<\pi ~,} where γ ≈ 0.57721566 ... is the Euler–Mascheroni constant. Some texts use ci instead of Ci.

Ci(x) is the antiderivative of cos x / x (which vanishes as x {\displaystyle x\to \infty } ). The two definitions are related by Ci ( x ) = γ + ln x Cin ( x )   . {\displaystyle \operatorname {Ci} (x)=\gamma +\ln x-\operatorname {Cin} (x)~.}

Cin is an even, entire function. For that reason, some texts treat Cin as the primary function, and derive Ci in terms of Cin.

Hyperbolic sine integral

The hyperbolic sine integral is defined as Shi ( x ) = 0 x sinh ( t ) t d t . {\displaystyle \operatorname {Shi} (x)=\int _{0}^{x}{\frac {\sinh(t)}{t}}\,dt.}

It is related to the ordinary sine integral by Si ( i x ) = i Shi ( x ) . {\displaystyle \operatorname {Si} (ix)=i\operatorname {Shi} (x).}

Hyperbolic cosine integral

The hyperbolic cosine integral is

Plot of the hyperbolic cosine integral function Chi(z) in the complex plane from −2 − 2i to 2 + 2i
Plot of the hyperbolic cosine integral function Chi(z) in the complex plane from −2 − 2i to 2 + 2i

Chi ( x ) = γ + ln x + 0 x cosh t 1 t d t    for    | Arg ( x ) | < π   , {\displaystyle \operatorname {Chi} (x)=\gamma +\ln x+\int _{0}^{x}{\frac {\cosh t-1}{t}}\,dt\qquad ~{\text{ for }}~\left|\operatorname {Arg} (x)\right|<\pi ~,} where γ {\displaystyle \gamma } is the Euler–Mascheroni constant.

It has the series expansion Chi ( x ) = γ + ln ( x ) + x 2 4 + x 4 96 + x 6 4320 + x 8 322560 + x 10 36288000 + O ( x 12 ) . {\displaystyle \operatorname {Chi} (x)=\gamma +\ln(x)+{\frac {x^{2}}{4}}+{\frac {x^{4}}{96}}+{\frac {x^{6}}{4320}}+{\frac {x^{8}}{322560}}+{\frac {x^{10}}{36288000}}+O(x^{12}).}

Auxiliary functions

Trigonometric integrals can be understood in terms of the so-called "auxiliary functions" f ( x ) 0 sin ( t ) t + x d t = 0 e x t t 2 + 1 d t = Ci ( x ) sin ( x ) + [ π 2 Si ( x ) ] cos ( x )   , g ( x ) 0 cos ( t ) t + x d t = 0 t e x t t 2 + 1 d t = Ci ( x ) cos ( x ) + [ π 2 Si ( x ) ] sin ( x )   . {\displaystyle {\begin{array}{rcl}f(x)&\equiv &\int _{0}^{\infty }{\frac {\sin(t)}{t+x}}\,dt&=&\int _{0}^{\infty }{\frac {e^{-xt}}{t^{2}+1}}\,dt&=&\operatorname {Ci} (x)\sin(x)+\left\cos(x)~,\\g(x)&\equiv &\int _{0}^{\infty }{\frac {\cos(t)}{t+x}}\,dt&=&\int _{0}^{\infty }{\frac {te^{-xt}}{t^{2}+1}}\,dt&=&-\operatorname {Ci} (x)\cos(x)+\left\sin(x)~.\end{array}}} Using these functions, the trigonometric integrals may be re-expressed as (cf. Abramowitz & Stegun, p. 232) π 2 Si ( x ) = si ( x ) = f ( x ) cos ( x ) + g ( x ) sin ( x )   ,  and  Ci ( x ) = f ( x ) sin ( x ) g ( x ) cos ( x )   . {\displaystyle {\begin{array}{rcl}{\frac {\pi }{2}}-\operatorname {Si} (x)=-\operatorname {si} (x)&=&f(x)\cos(x)+g(x)\sin(x)~,\qquad {\text{ and }}\\\operatorname {Ci} (x)&=&f(x)\sin(x)-g(x)\cos(x)~.\\\end{array}}}

Nielsen's spiral

Nielsen's spiral.

The spiral formed by parametric plot of si, ci is known as Nielsen's spiral. x ( t ) = a × ci ( t ) {\displaystyle x(t)=a\times \operatorname {ci} (t)} y ( t ) = a × si ( t ) {\displaystyle y(t)=a\times \operatorname {si} (t)}

The spiral is closely related to the Fresnel integrals and the Euler spiral. Nielsen's spiral has applications in vision processing, road and track construction and other areas.

Expansion

Various expansions can be used for evaluation of trigonometric integrals, depending on the range of the argument.

Asymptotic series (for large argument)

Si ( x ) π 2 cos x x ( 1 2 ! x 2 + 4 ! x 4 6 ! x 6 ) sin x x ( 1 x 3 ! x 3 + 5 ! x 5 7 ! x 7 ) {\displaystyle \operatorname {Si} (x)\sim {\frac {\pi }{2}}-{\frac {\cos x}{x}}\left(1-{\frac {2!}{x^{2}}}+{\frac {4!}{x^{4}}}-{\frac {6!}{x^{6}}}\cdots \right)-{\frac {\sin x}{x}}\left({\frac {1}{x}}-{\frac {3!}{x^{3}}}+{\frac {5!}{x^{5}}}-{\frac {7!}{x^{7}}}\cdots \right)} Ci ( x ) sin x x ( 1 2 ! x 2 + 4 ! x 4 6 ! x 6 ) cos x x ( 1 x 3 ! x 3 + 5 ! x 5 7 ! x 7 )   . {\displaystyle \operatorname {Ci} (x)\sim {\frac {\sin x}{x}}\left(1-{\frac {2!}{x^{2}}}+{\frac {4!}{x^{4}}}-{\frac {6!}{x^{6}}}\cdots \right)-{\frac {\cos x}{x}}\left({\frac {1}{x}}-{\frac {3!}{x^{3}}}+{\frac {5!}{x^{5}}}-{\frac {7!}{x^{7}}}\cdots \right)~.}

These series are asymptotic and divergent, although can be used for estimates and even precise evaluation at ℜ(x) ≫ 1.

Convergent series

Si ( x ) = n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! = x x 3 3 ! 3 + x 5 5 ! 5 x 7 7 ! 7 ± {\displaystyle \operatorname {Si} (x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)(2n+1)!}}=x-{\frac {x^{3}}{3!\cdot 3}}+{\frac {x^{5}}{5!\cdot 5}}-{\frac {x^{7}}{7!\cdot 7}}\pm \cdots } Ci ( x ) = γ + ln x + n = 1 ( 1 ) n x 2 n 2 n ( 2 n ) ! = γ + ln x x 2 2 ! 2 + x 4 4 ! 4 {\displaystyle \operatorname {Ci} (x)=\gamma +\ln x+\sum _{n=1}^{\infty }{\frac {(-1)^{n}x^{2n}}{2n(2n)!}}=\gamma +\ln x-{\frac {x^{2}}{2!\cdot 2}}+{\frac {x^{4}}{4!\cdot 4}}\mp \cdots }

These series are convergent at any complex x, although for |x| ≫ 1, the series will converge slowly initially, requiring many terms for high precision.

Derivation of series expansion

From the Maclaurin series expansion of sine: sin x = x x 3 3 ! + x 5 5 ! x 7 7 ! + x 9 9 ! x 11 11 ! + {\displaystyle \sin \,x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+{\frac {x^{9}}{9!}}-{\frac {x^{11}}{11!}}+\cdots } sin x x = 1 x 2 3 ! + x 4 5 ! x 6 7 ! + x 8 9 ! x 10 11 ! + {\displaystyle {\frac {\sin \,x}{x}}=1-{\frac {x^{2}}{3!}}+{\frac {x^{4}}{5!}}-{\frac {x^{6}}{7!}}+{\frac {x^{8}}{9!}}-{\frac {x^{10}}{11!}}+\cdots } sin x x d x = x x 3 3 ! 3 + x 5 5 ! 5 x 7 7 ! 7 + x 9 9 ! 9 x 11 11 ! 11 + {\displaystyle \therefore \int {\frac {\sin \,x}{x}}dx=x-{\frac {x^{3}}{3!\cdot 3}}+{\frac {x^{5}}{5!\cdot 5}}-{\frac {x^{7}}{7!\cdot 7}}+{\frac {x^{9}}{9!\cdot 9}}-{\frac {x^{11}}{11!\cdot 11}}+\cdots }

Relation with the exponential integral of imaginary argument

The function E 1 ( z ) = 1 exp ( z t ) t d t    for    ( z ) 0 {\displaystyle \operatorname {E} _{1}(z)=\int _{1}^{\infty }{\frac {\exp(-zt)}{t}}\,dt\qquad ~{\text{ for }}~\Re (z)\geq 0} is called the exponential integral. It is closely related to Si and Ci, E 1 ( i x ) = i ( π 2 + Si ( x ) ) Ci ( x ) = i si ( x ) ci ( x )    for    x > 0   . {\displaystyle \operatorname {E} _{1}(ix)=i\left(-{\frac {\pi }{2}}+\operatorname {Si} (x)\right)-\operatorname {Ci} (x)=i\operatorname {si} (x)-\operatorname {ci} (x)\qquad ~{\text{ for }}~x>0~.}

As each respective function is analytic except for the cut at negative values of the argument, the area of validity of the relation should be extended to (Outside this range, additional terms which are integer factors of π appear in the expression.)

Cases of imaginary argument of the generalized integro-exponential function are 1 cos ( a x ) ln x x d x = π 2 24 + γ ( γ 2 + ln a ) + ln 2 a 2 + n 1 ( a 2 ) n ( 2 n ) ! ( 2 n ) 2   , {\displaystyle \int _{1}^{\infty }\cos(ax){\frac {\ln x}{x}}\,dx=-{\frac {\pi ^{2}}{24}}+\gamma \left({\frac {\gamma }{2}}+\ln a\right)+{\frac {\ln ^{2}a}{2}}+\sum _{n\geq 1}{\frac {(-a^{2})^{n}}{(2n)!(2n)^{2}}}~,} which is the real part of 1 e i a x ln x x d x = π 2 24 + γ ( γ 2 + ln a ) + ln 2 a 2 π 2 i ( γ + ln a ) + n 1 ( i a ) n n ! n 2   . {\displaystyle \int _{1}^{\infty }e^{iax}{\frac {\ln x}{x}}\,dx=-{\frac {\pi ^{2}}{24}}+\gamma \left({\frac {\gamma }{2}}+\ln a\right)+{\frac {\ln ^{2}a}{2}}-{\frac {\pi }{2}}i\left(\gamma +\ln a\right)+\sum _{n\geq 1}{\frac {(ia)^{n}}{n!n^{2}}}~.}

Similarly 1 e i a x ln x x 2 d x = 1 + i a [ π 2 24 + γ ( γ 2 + ln a 1 ) + ln 2 a 2 ln a + 1 ] + π a 2 ( γ + ln a 1 ) + n 1 ( i a ) n + 1 ( n + 1 ) ! n 2   . {\displaystyle \int _{1}^{\infty }e^{iax}{\frac {\ln x}{x^{2}}}\,dx=1+ia\left+{\frac {\pi a}{2}}{\Bigl (}\gamma +\ln a-1{\Bigr )}+\sum _{n\geq 1}{\frac {(ia)^{n+1}}{(n+1)!n^{2}}}~.}

Efficient evaluation

Padé approximants of the convergent Taylor series provide an efficient way to evaluate the functions for small arguments. The following formulae, given by Rowe et al. (2015), are accurate to better than 10 for 0 ≤ x ≤ 4, Si ( x ) x ( 1 4.54393409816329991 10 2 x 2 + 1.15457225751016682 10 3 x 4 1.41018536821330254 10 5 x 6       + 9.43280809438713025 10 8 x 8 3.53201978997168357 10 10 x 10 + 7.08240282274875911 10 13 x 12       6.05338212010422477 10 16 x 14 1 + 1.01162145739225565 10 2 x 2 + 4.99175116169755106 10 5 x 4 + 1.55654986308745614 10 7 x 6       + 3.28067571055789734 10 10 x 8 + 4.5049097575386581 10 13 x 10 + 3.21107051193712168 10 16 x 12 )   Ci ( x ) γ + ln ( x ) + x 2 ( 0.25 + 7.51851524438898291 10 3 x 2 1.27528342240267686 10 4 x 4 + 1.05297363846239184 10 6 x 6       4.68889508144848019 10 9 x 8 + 1.06480802891189243 10 11 x 10 9.93728488857585407 10 15 x 12 1 + 1.1592605689110735 10 2 x 2 + 6.72126800814254432 10 5 x 4 + 2.55533277086129636 10 7 x 6       + 6.97071295760958946 10 10 x 8 + 1.38536352772778619 10 12 x 10 + 1.89106054713059759 10 15 x 12       + 1.39759616731376855 10 18 x 14 ) {\displaystyle {\begin{array}{rcl}\operatorname {Si} (x)&\approx &x\cdot \left({\frac {\begin{array}{l}1-4.54393409816329991\cdot 10^{-2}\cdot x^{2}+1.15457225751016682\cdot 10^{-3}\cdot x^{4}-1.41018536821330254\cdot 10^{-5}\cdot x^{6}\\~~~+9.43280809438713025\cdot 10^{-8}\cdot x^{8}-3.53201978997168357\cdot 10^{-10}\cdot x^{10}+7.08240282274875911\cdot 10^{-13}\cdot x^{12}\\~~~-6.05338212010422477\cdot 10^{-16}\cdot x^{14}\end{array}}{\begin{array}{l}1+1.01162145739225565\cdot 10^{-2}\cdot x^{2}+4.99175116169755106\cdot 10^{-5}\cdot x^{4}+1.55654986308745614\cdot 10^{-7}\cdot x^{6}\\~~~+3.28067571055789734\cdot 10^{-10}\cdot x^{8}+4.5049097575386581\cdot 10^{-13}\cdot x^{10}+3.21107051193712168\cdot 10^{-16}\cdot x^{12}\end{array}}}\right)\\&~&\\\operatorname {Ci} (x)&\approx &\gamma +\ln(x)+\\&&x^{2}\cdot \left({\frac {\begin{array}{l}-0.25+7.51851524438898291\cdot 10^{-3}\cdot x^{2}-1.27528342240267686\cdot 10^{-4}\cdot x^{4}+1.05297363846239184\cdot 10^{-6}\cdot x^{6}\\~~~-4.68889508144848019\cdot 10^{-9}\cdot x^{8}+1.06480802891189243\cdot 10^{-11}\cdot x^{10}-9.93728488857585407\cdot 10^{-15}\cdot x^{12}\\\end{array}}{\begin{array}{l}1+1.1592605689110735\cdot 10^{-2}\cdot x^{2}+6.72126800814254432\cdot 10^{-5}\cdot x^{4}+2.55533277086129636\cdot 10^{-7}\cdot x^{6}\\~~~+6.97071295760958946\cdot 10^{-10}\cdot x^{8}+1.38536352772778619\cdot 10^{-12}\cdot x^{10}+1.89106054713059759\cdot 10^{-15}\cdot x^{12}\\~~~+1.39759616731376855\cdot 10^{-18}\cdot x^{14}\\\end{array}}}\right)\end{array}}}

The integrals may be evaluated indirectly via auxiliary functions f ( x ) {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} , which are defined by

Si ( x ) = π 2 f ( x ) cos ( x ) g ( x ) sin ( x ) {\displaystyle \operatorname {Si} (x)={\frac {\pi }{2}}-f(x)\cos(x)-g(x)\sin(x)} Ci ( x ) = f ( x ) sin ( x ) g ( x ) cos ( x ) {\displaystyle \operatorname {Ci} (x)=f(x)\sin(x)-g(x)\cos(x)}
or equivalently
f ( x ) [ π 2 Si ( x ) ] cos ( x ) + Ci ( x ) sin ( x ) {\displaystyle f(x)\equiv \left\cos(x)+\operatorname {Ci} (x)\sin(x)} g ( x ) [ π 2 Si ( x ) ] sin ( x ) Ci ( x ) cos ( x ) {\displaystyle g(x)\equiv \left\sin(x)-\operatorname {Ci} (x)\cos(x)}

For x 4 {\displaystyle x\geq 4} the Padé rational functions given below approximate f ( x ) {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} with error less than 10:

f ( x ) 1 x ( 1 + 7.44437068161936700618 10 2 x 2 + 1.96396372895146869801 10 5 x 4 + 2.37750310125431834034 10 7 x 6       + 1.43073403821274636888 10 9 x 8 + 4.33736238870432522765 10 10 x 10 + 6.40533830574022022911 10 11 x 12       + 4.20968180571076940208 10 12 x 14 + 1.00795182980368574617 10 13 x 16 + 4.94816688199951963482 10 12 x 18       4.94701168645415959931 10 11 x 20 1 + 7.46437068161927678031 10 2 x 2 + 1.97865247031583951450 10 5 x 4 + 2.41535670165126845144 10 7 x 6       + 1.47478952192985464958 10 9 x 8 + 4.58595115847765779830 10 10 x 10 + 7.08501308149515401563 10 11 x 12       + 5.06084464593475076774 10 12 x 14 + 1.43468549171581016479 10 13 x 16 + 1.11535493509914254097 10 13 x 18 ) g ( x ) 1 x 2 ( 1 + 8.1359520115168615 10 2 x 2 + 2.35239181626478200 10 5 x 4 + 3.12557570795778731 10 7 x 6       + 2.06297595146763354 10 9 x 8 + 6.83052205423625007 10 10 x 10 + 1.09049528450362786 10 12 x 12       + 7.57664583257834349 10 12 x 14 + 1.81004487464664575 10 13 x 16 + 6.43291613143049485 10 12 x 18       1.36517137670871689 10 12 x 20 1 + 8.19595201151451564 10 2 x 2 + 2.40036752835578777 10 5 x 4 + 3.26026661647090822 10 7 x 6       + 2.23355543278099360 10 9 x 8 + 7.87465017341829930 10 10 x 10 + 1.39866710696414565 10 12 x 12       + 1.17164723371736605 10 13 x 14 + 4.01839087307656620 10 13 x 16 + 3.99653257887490811 10 13 x 18 ) {\displaystyle {\begin{array}{rcl}f(x)&\approx &{\dfrac {1}{x}}\cdot \left({\frac {\begin{array}{l}1+7.44437068161936700618\cdot 10^{2}\cdot x^{-2}+1.96396372895146869801\cdot 10^{5}\cdot x^{-4}+2.37750310125431834034\cdot 10^{7}\cdot x^{-6}\\~~~+1.43073403821274636888\cdot 10^{9}\cdot x^{-8}+4.33736238870432522765\cdot 10^{10}\cdot x^{-10}+6.40533830574022022911\cdot 10^{11}\cdot x^{-12}\\~~~+4.20968180571076940208\cdot 10^{12}\cdot x^{-14}+1.00795182980368574617\cdot 10^{13}\cdot x^{-16}+4.94816688199951963482\cdot 10^{12}\cdot x^{-18}\\~~~-4.94701168645415959931\cdot 10^{11}\cdot x^{-20}\end{array}}{\begin{array}{l}1+7.46437068161927678031\cdot 10^{2}\cdot x^{-2}+1.97865247031583951450\cdot 10^{5}\cdot x^{-4}+2.41535670165126845144\cdot 10^{7}\cdot x^{-6}\\~~~+1.47478952192985464958\cdot 10^{9}\cdot x^{-8}+4.58595115847765779830\cdot 10^{10}\cdot x^{-10}+7.08501308149515401563\cdot 10^{11}\cdot x^{-12}\\~~~+5.06084464593475076774\cdot 10^{12}\cdot x^{-14}+1.43468549171581016479\cdot 10^{13}\cdot x^{-16}+1.11535493509914254097\cdot 10^{13}\cdot x^{-18}\end{array}}}\right)\\&&\\g(x)&\approx &{\dfrac {1}{x^{2}}}\cdot \left({\frac {\begin{array}{l}1+8.1359520115168615\cdot 10^{2}\cdot x^{-2}+2.35239181626478200\cdot 10^{5}\cdot x^{-4}+3.12557570795778731\cdot 10^{7}\cdot x^{-6}\\~~~+2.06297595146763354\cdot 10^{9}\cdot x^{-8}+6.83052205423625007\cdot 10^{10}\cdot x^{-10}+1.09049528450362786\cdot 10^{12}\cdot x^{-12}\\~~~+7.57664583257834349\cdot 10^{12}\cdot x^{-14}+1.81004487464664575\cdot 10^{13}\cdot x^{-16}+6.43291613143049485\cdot 10^{12}\cdot x^{-18}\\~~~-1.36517137670871689\cdot 10^{12}\cdot x^{-20}\end{array}}{\begin{array}{l}1+8.19595201151451564\cdot 10^{2}\cdot x^{-2}+2.40036752835578777\cdot 10^{5}\cdot x^{-4}+3.26026661647090822\cdot 10^{7}\cdot x^{-6}\\~~~+2.23355543278099360\cdot 10^{9}\cdot x^{-8}+7.87465017341829930\cdot 10^{10}\cdot x^{-10}+1.39866710696414565\cdot 10^{12}\cdot x^{-12}\\~~~+1.17164723371736605\cdot 10^{13}\cdot x^{-14}+4.01839087307656620\cdot 10^{13}\cdot x^{-16}+3.99653257887490811\cdot 10^{13}\cdot x^{-18}\end{array}}}\right)\\\end{array}}}

See also

References

  1. Gray (1993). Modern Differential Geometry of Curves and Surfaces. Boca Raton. p. 119.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ Rowe, B.; et al. (2015). "GALSIM: The modular galaxy image simulation toolkit". Astronomy and Computing. 10: 121. arXiv:1407.7676. Bibcode:2015A&C....10..121R. doi:10.1016/j.ascom.2015.02.002. S2CID 62709903.

Further reading

External links

Nonelementary integrals
Categories: