Misplaced Pages

Ultraviolet–visible spectroscopy of stereoisomers

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ultraviolet-visible spectroscopy of stereoisomers)

Ultraviolet–visible spectroscopy (UV–vis) can distinguish between enantiomers by showing a distinct Cotton effect for each isomer. UV–vis spectroscopy sees only chromophores, so other molecules must be prepared for analysis by chemical addition of a chromophore such as anthracene. Two methods are reported: the octant rule and the exciton chirality method.

The octant rule was introduced in 1961 by William Moffitt, R. B. Woodward, A. Moscowitz, William Klyne and Carl Djerassi. This empirical rule allows the prediction of the sign of the Cotton effect by analysing relative orientation of substituents in three dimensions and in this way the absolute configuration of an enantiomer.

See also

References

  1. Lambert, Joseph B.; et al. (1998), Organic Structural Spectroscopy, Prentice Hall, pp. 309–317, ISBN 0-13-258690-8.
  2. Structure and the Optical Rotatory Dispersion of Saturated Ketones William Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, Carl Djerassi J. Am. Chem. Soc., 1961, 83 (19), pp 4013–4018 doi:10.1021/ja01480a015
  3. The octant rule: Its place in organic stereochemistry William S. Murphy J. Chem. Educ., 1975, 52 (12), p 774 doi:10.1021/ed052p774 Publication Date: December 1975
  4. A Simple Computer-Aided Three-Dimensional Molecular Modeling for the Octant Rule Yinan Kang, Fu-An Kang J. Chem. Educ., 2011, 88 (4), p 420 doi:10.1021/ed1001027
Concepts in enantioselective synthesis
Chirality types
Chiral molecules
Analysis
Chiral resolution
Reactions
Category: