Misplaced Pages

Very large-scale neighborhood search

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical optimization technique
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Very large-scale neighborhood search" – news · newspapers · books · scholar · JSTOR (February 2009)

In mathematical optimization, neighborhood search is a technique that tries to find good or near-optimal solutions to a combinatorial optimisation problem by repeatedly transforming a current solution into a different solution in the neighborhood of the current solution. The neighborhood of a solution is a set of similar solutions obtained by relatively simple modifications to the original solution. For a very large-scale neighborhood search, the neighborhood is large and possibly exponentially sized.

The resulting algorithms can outperform algorithms using small neighborhoods because the local improvements are larger. If neighborhood searched is limited to just one or a very small number of changes from the current solution, then it can be difficult to escape from local minima, even with additional meta-heuristic techniques such as Simulated Annealing or Tabu search. In large neighborhood search techniques, the possible changes from one solution to its neighbor may allow tens or hundreds of values to change, and this means that the size of the neighborhood may itself be sufficient to allow the search process to avoid or escape local minima, though additional meta-heuristic techniques can still improve performance.

References


Stub icon

This mathematics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: