In mathematics, in the field of p-adic analysis , the Volkenborn integral is a method of integration for p-adic functions.
Definition
Let :
f
:
Z
p
→
C
p
{\displaystyle f:\mathbb {Z} _{p}\to \mathbb {C} _{p}}
be a function from the p-adic integers taking values in the p-adic numbers. The Volkenborn integral is defined by the limit, if it exists:
∫
Z
p
f
(
x
)
d
x
=
lim
n
→
∞
1
p
n
∑
x
=
0
p
n
−
1
f
(
x
)
.
{\displaystyle \int _{\mathbb {Z} _{p}}f(x)\,{\rm {d}}x=\lim _{n\to \infty }{\frac {1}{p^{n}}}\sum _{x=0}^{p^{n}-1}f(x).}
More generally, if
R
n
=
{
x
=
∑
i
=
r
n
−
1
b
i
x
i
|
b
i
=
0
,
…
,
p
−
1
for
r
<
n
}
{\displaystyle R_{n}=\left\{\left.x=\sum _{i=r}^{n-1}b_{i}x^{i}\right|b_{i}=0,\ldots ,p-1{\text{ for }}r<n\right\}}
then
∫
K
f
(
x
)
d
x
=
lim
n
→
∞
1
p
n
∑
x
∈
R
n
∩
K
f
(
x
)
.
{\displaystyle \int _{K}f(x)\,{\rm {d}}x=\lim _{n\to \infty }{\frac {1}{p^{n}}}\sum _{x\in R_{n}\cap K}f(x).}
This integral was defined by Arnt Volkenborn.
Examples
∫
Z
p
1
d
x
=
1
{\displaystyle \int _{\mathbb {Z} _{p}}1\,{\rm {d}}x=1}
∫
Z
p
x
d
x
=
−
1
2
{\displaystyle \int _{\mathbb {Z} _{p}}x\,{\rm {d}}x=-{\frac {1}{2}}}
∫
Z
p
x
2
d
x
=
1
6
{\displaystyle \int _{\mathbb {Z} _{p}}x^{2}\,{\rm {d}}x={\frac {1}{6}}}
∫
Z
p
x
k
d
x
=
B
k
{\displaystyle \int _{\mathbb {Z} _{p}}x^{k}\,{\rm {d}}x=B_{k}}
where
B
k
{\displaystyle B_{k}}
is the k-th Bernoulli number .
The above four examples can be easily checked by direct use of the definition and Faulhaber's formula .
∫
Z
p
(
x
k
)
d
x
=
(
−
1
)
k
k
+
1
{\displaystyle \int _{\mathbb {Z} _{p}}{x \choose k}\,{\rm {d}}x={\frac {(-1)^{k}}{k+1}}}
∫
Z
p
(
1
+
a
)
x
d
x
=
log
(
1
+
a
)
a
{\displaystyle \int _{\mathbb {Z} _{p}}(1+a)^{x}\,{\rm {d}}x={\frac {\log(1+a)}{a}}}
∫
Z
p
e
a
x
d
x
=
a
e
a
−
1
{\displaystyle \int _{\mathbb {Z} _{p}}e^{ax}\,{\rm {d}}x={\frac {a}{e^{a}-1}}}
The last two examples can be formally checked by expanding in the Taylor series and integrating term-wise.
∫
Z
p
log
p
(
x
+
u
)
d
u
=
ψ
p
(
x
)
{\displaystyle \int _{\mathbb {Z} _{p}}\log _{p}(x+u)\,{\rm {d}}u=\psi _{p}(x)}
with
log
p
{\displaystyle \log _{p}}
the p-adic logarithmic function and
ψ
p
{\displaystyle \psi _{p}}
the p-adic digamma function .
Properties
∫
Z
p
f
(
x
+
m
)
d
x
=
∫
Z
p
f
(
x
)
d
x
+
∑
x
=
0
m
−
1
f
′
(
x
)
{\displaystyle \int _{\mathbb {Z} _{p}}f(x+m)\,{\rm {d}}x=\int _{\mathbb {Z} _{p}}f(x)\,{\rm {d}}x+\sum _{x=0}^{m-1}f'(x)}
From this it follows that the Volkenborn-integral is not translation invariant.
If
P
t
=
p
t
Z
p
{\displaystyle P^{t}=p^{t}\mathbb {Z} _{p}}
then
∫
P
t
f
(
x
)
d
x
=
1
p
t
∫
Z
p
f
(
p
t
x
)
d
x
{\displaystyle \int _{P^{t}}f(x)\,{\rm {d}}x={\frac {1}{p^{t}}}\int _{\mathbb {Z} _{p}}f(p^{t}x)\,{\rm {d}}x}
See also
References
Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen I. In: Manuscripta Mathematica. Bd. 7, Nr. 4, 1972,
Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen II. In: Manuscripta Mathematica. Bd. 12, Nr. 1, 1974,
Henri Cohen, "Number Theory", Volume II, page 276
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑