Vulcanisaeta | |
---|---|
Scientific classification | |
Domain: | Archaea |
Phylum: | Thermoproteota |
Class: | Thermoprotei |
Order: | Thermoproteales |
Family: | Thermoproteaceae |
Genus: | Vulcanisaeta Itoh, Suzuki & Nakase 2002 |
Type species | |
Vulcanisaeta distributa Itoh, Suzuki & Nakase 2002 | |
Species | |
In taxonomy, Vulcanisaeta is a genus of the Thermoproteaceae.
Description and significance
Vulcanisaeta is an anaerobic, heterotrophic, hyperthermophilic archaeon that grows optimally at 85–90 °C and at pH 4.0–4.5. The organism is isolated from samples collected directly from solfataric fields or piped hot spring water in eastern Japan.
Genome structure
Several Vulcanisaeta genomes have been sequenced, see List of sequenced archaeal genomes. The G + C content of its DNA, which is between 44 and 46%, is predicted to be relatively lower than other members of the Thermoproteaceae genera.
Cell structure and metabolism
The cells of Vulcanisaeta are straight to slightly curved rods, which range from 0.4 to 0.6 μm in width. In some cases, the cells are branched or bear spherical bodies at the terminals. The archaeon utilizes maltose, starch, malate, yeast extract, peptone, beef extract, casamino acids and gelatin as carbon sources, cannot utilize D-arabinose, D-fructose, lactose, sucrose, D-xylose, acetate, butyrate, formate, fumarate, propionate, pyruvate, succinate, methanol, formamide, methylamine or trimethylamine. As electron acceptors, the organism uses sulfur and thiosulfate. Unlike some other genetically similar archaea such as Thermocladium or Caldivirga, Vulcanisaeta grows in the absence of vitamin mixture or archaeal cell-extract solution in the medium.
Ecology
Strains of Vulcanisaeta were found in hot spring areas in Japan. Despite the organisms being the most common rod-shaped crenarchaeote among isolates from hot springs in Japan, it has not isolated from other countries. This contrasts with the genera Thermoproteus and Pyrobaculum, which are distributed worldwide, including the Azores, Iceland, Indonesia, Italy, Japan, the Philippines, Russia, and the United States. Therefore, it is possible that the genus Vulcanisaeta has a restricted distribution that includes Japan.
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI)
16S rRNA based LTP_06_2022 | 53 marker proteins based GTDB 08-RS214 | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
See also
References
- ^ Sayers; et al. "Vulcanisaeta". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2023-06-10.
- J.P. Euzéby. "Vulcanisaeta". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2023-06-10.
- "The LTP". Retrieved 10 May 2023.
- "LTP_all tree in newick format". Retrieved 10 May 2023.
- "LTP_06_2022 Release Notes" (PDF). Retrieved 10 May 2023.
- "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
- "ar53_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
- "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
Further reading
- Jay ZJ; JP. Beam; MA. Kozubal; Rdem Jennings; DB. Rusch & Inskeep WP (December 2016). "The distribution, diversity and function of predominant Thermoproteales in high-temperature environments of Yellowstone National Park". Environmental Microbiology. 18 (12): 4755–4769. doi:10.1111/1462-2920.13366. PMID 27130276.
- Jay ZJ, Inskeep WP (July 2015). "The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales". Biology Direct. 10 (35): 35. doi:10.1186/s13062-015-0065-6. PMC 4496867. PMID 26156036.
- Mavromatis, Konstantinos (2010). "Complete genome sequence of Vulcanisaeta distributa type strain (IC-017(T))". Standards in Genomic Sciences. 3 (2): 117–125. doi:10.4056/sigs.1113067. PMC 3035369. PMID 21304741.
- Itoh T; Suzuki K; Nakase T (2002). "Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan". Int. J. Syst. Evol. Microbiol. 52 (Pt 4): 1097–1104. doi:10.1099/ijs.0.02152-0. PMID 12148613.
- Burggraf S; Huber H; Stetter KO (1997). "Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data". Int. J. Syst. Bacteriol. 47 (3): 657–660. doi:10.1099/00207713-47-3-657. PMID 9226896.
- Zillig W; Stetter KO; Schafer W; Janekovic D; Wunderl S; Holz I; Palm P (1981). "Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras". Zentralbl. Mikrobiol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. C2: 205–227.
Prokaryotes: Archaea classification | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Euryarchaeota (Methanobacteriati) |
| ||||||||||
DPANN (Nanobdellati) |
| ||||||||||
Proteoarchaeota |
| ||||||||||
|
Taxon identifiers | |
---|---|
Vulcanisaeta |
This Thermoproteota-related article is a stub. You can help Misplaced Pages by expanding it. |