Exact solution to Einstein's field equations
General relativity
G
μ
ν
+
Λ
g
μ
ν
=
κ
T
μ
ν
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}
Fundamental concepts
Phenomena
Equations
Formalisms
Advanced theory
Solutions
Scientists
In general relativity , the Weyl–Lewis–Papapetrou coordinates are used in solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy . They are named for Hermann Weyl , Thomas Lewis, and Achilles Papapetrou .
Details
The square of the line element is of the form:
d
s
2
=
−
e
2
ν
d
t
2
+
ρ
2
B
2
e
−
2
ν
(
d
ϕ
−
ω
d
t
)
2
+
e
2
(
λ
−
ν
)
(
d
ρ
2
+
d
z
2
)
{\displaystyle ds^{2}=-e^{2\nu }dt^{2}+\rho ^{2}B^{2}e^{-2\nu }(d\phi -\omega dt)^{2}+e^{2(\lambda -\nu )}(d\rho ^{2}+dz^{2})}
where
(
t
,
ρ
,
ϕ
,
z
)
{\displaystyle (t,\rho ,\phi ,z)}
are the cylindrical Weyl–Lewis–Papapetrou coordinates in
3
+
1
{\displaystyle 3+1}
-dimensional spacetime , and
λ
{\displaystyle \lambda }
,
ν
{\displaystyle \nu }
,
ω
{\displaystyle \omega }
, and
B
{\displaystyle B}
, are unknown functions of the spatial non-angular coordinates
ρ
{\displaystyle \rho }
and
z
{\displaystyle z}
only. Different authors define the functions of the coordinates differently.
See also
References
Weyl, Hermann (1917). "Zur Gravitationstheorie" . Annalen der Physik (in German). 359 (18): 117–145. Bibcode :1917AnP...359..117W . doi :10.1002/andp.19173591804 . ISSN 0003-3804 .
Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields" . Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character . 136 (829): 176–192. Bibcode :1932RSPSA.136..176L . doi :10.1098/rspa.1932.0073 . ISSN 0950-1207 .
Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proceedings of the Royal Irish Academy . Section A: Mathematical and Physical Sciences . 52 : 191–204. JSTOR 20488481 .
Bičák, Jiří; Semerák, O.; Podolský, Jiří; Žofka, Martin (2002). Bičák, Jiří; Semerák, O.; Podolský, J.; Žofka, M. (eds.). Gravitation, following the Prague inspiration: a volume in celebration of the 60th birthday of Jiří Bičák . River Edge, N.J: World Scientific . p. 122. ISBN 978-981-238-093-7 . OCLC 51260088 .
Further reading
Selected papers
Selected books
Friedman, John L.; Stergioulas, Nikolaos (2013). Rotating relativistic stars . Cambridge monographs on mathematical physics. Cambridge University Press . p. 151. ISBN 978-0-521-87254-6 .
Macías, A.; Cervantes-Cota, J. L.; Lämmerzahl, C. (2001). Macías, A.; Cervantes Cota, Jorge Luis; Lämmerzahl, C. (eds.). Exact solutions and scalar fields in gravity: recent developments . New York: Kluwer Academic /Plenum Publishers . p. 39. ISBN 978-0-306-46618-2 .
Das, Anadijiban; DeBenedictis, Andrew (2012). The general theory of relativity: a mathematical exposition . New York London: Springer Publishing . p. 317. ISBN 978-1-4614-3658-4 .
Hall, G. S.; Pulham, J. R. (1996). Hall, G. S.; Pulham, J. R. (eds.). General relativity: proceedings of the forty sixth Scottish Universities summer school in physics, Aberdeen, July 1995 . SUSSP publications. Vol. 46. Scottish Universities Summer Schools in Physics ; Institute of Physics Publishing . pp. 65, 73, 78. ISBN 978-0-7503-0395-8 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑