Misplaced Pages

Weyl–Lewis–Papapetrou coordinates

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Exact solution to Einstein's field equations
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (October 2013) (Learn how and when to remove this message)
General relativity
Spacetime curvature schematic G μ ν + Λ g μ ν = κ T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}
Fundamental concepts
Phenomena
Spacetime
  • Equations
  • Formalisms
Equations
Formalisms
Advanced theory
Solutions
Scientists

In general relativity, the Weyl–Lewis–Papapetrou coordinates are used in solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.

Details

The square of the line element is of the form:

d s 2 = e 2 ν d t 2 + ρ 2 B 2 e 2 ν ( d ϕ ω d t ) 2 + e 2 ( λ ν ) ( d ρ 2 + d z 2 ) {\displaystyle ds^{2}=-e^{2\nu }dt^{2}+\rho ^{2}B^{2}e^{-2\nu }(d\phi -\omega dt)^{2}+e^{2(\lambda -\nu )}(d\rho ^{2}+dz^{2})}

where ( t , ρ , ϕ , z ) {\displaystyle (t,\rho ,\phi ,z)} are the cylindrical Weyl–Lewis–Papapetrou coordinates in 3 + 1 {\displaystyle 3+1} -dimensional spacetime, and λ {\displaystyle \lambda } , ν {\displaystyle \nu } , ω {\displaystyle \omega } , and B {\displaystyle B} , are unknown functions of the spatial non-angular coordinates ρ {\displaystyle \rho } and z {\displaystyle z} only. Different authors define the functions of the coordinates differently.

See also

References

  1. Weyl, Hermann (1917). "Zur Gravitationstheorie". Annalen der Physik (in German). 359 (18): 117–145. Bibcode:1917AnP...359..117W. doi:10.1002/andp.19173591804. ISSN 0003-3804.
  2. Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 136 (829): 176–192. Bibcode:1932RSPSA.136..176L. doi:10.1098/rspa.1932.0073. ISSN 0950-1207.
  3. Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 52: 191–204. JSTOR 20488481.
  4. Bičák, Jiří; Semerák, O.; Podolský, Jiří; Žofka, Martin (2002). Bičák, Jiří; Semerák, O.; Podolský, J.; Žofka, M. (eds.). Gravitation, following the Prague inspiration: a volume in celebration of the 60th birthday of Jiří Bičák. River Edge, N.J: World Scientific. p. 122. ISBN 978-981-238-093-7. OCLC 51260088.

Further reading

Selected papers

Selected books

Relativity
Special
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Spacetime
General
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Advanced
theories
Solutions
Scientists
Category


Stub icon

This relativity-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: