Misplaced Pages

Isotopes of xenon

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Xe-133)

Isotopes of xenon (54Xe)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Xe 0.095% 1.8×10 y εε Te
Xe synth 16.9 h β I
Xe 0.0890% stable
Xe synth 36.345 d ε I
Xe 1.91% stable
Xe 26.4% stable
Xe 4.07% stable
Xe 21.2% stable
Xe 26.9% stable
Xe synth 5.247 d β Cs
Xe 10.4% stable
Xe synth 9.14 h β Cs
Xe 8.86% 2.165×10 y ββ Ba
Standard atomic weight Ar°(Xe)

Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in Xe (half-life 1.8 ± 0.5(stat) ± 0.1(sys) ×10 years) and double beta decay in Xe (half-life 2.165 ± 0.016(stat) ± 0.059(sys) ×10 years), which are among the longest measured half-lives of all nuclides. The isotopes Xe and Xe are also predicted to undergo double beta decay, but this process has never been observed in these isotopes, so they are considered to be stable. Beyond these stable forms, 32 artificial unstable isotopes and various isomers have been studied, the longest-lived of which is Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, Xe, has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is Xe with a half-life of 11.934 days. Xe is produced by beta decay of I (half-life: 16 million years); Xe, Xe, Xe, and Xe are some of the fission products of both U and Pu, so are used as indicators of nuclear explosions.

The artificial isotope Xe is of considerable significance in the operation of nuclear fission reactors. Xe has a huge cross section for thermal neutrons, 2.65×10 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Because of this effect, designers must make provisions to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel) over the initial value needed to start the chain reaction. For the same reason, the fission products produced in a nuclear explosion and a power plant differ significantly as a large share of
Xe will absorb neutrons in a steady state reactor, while basically none of the
I will have had time to decay to xenon before the explosion of the bomb removes it from the neutron radiation.

Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from cracked fuel rods or fissioning of uranium in cooling water. The concentrations of these isotopes are still usually low compared to the naturally occurring radioactive noble gas Rn.

Because xenon is a tracer for two parent isotopes, Xe isotope ratios in meteorites are a powerful tool for studying the formation of the Solar System. The I-Xe method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula (xenon being a gas, only that part of it that formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understanding terrestrial differentiation. Excess Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation. It has been suggested that the isotopic composition of atmospheric xenon fluctuated prior to the GOE before stabilizing, perhaps as a result of the rise in atmospheric O2.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Xe 54 54 107.95423(41) 72(35) μs α Te 0+
Xe 54 55 108.95043(32) 13(2) ms α Te (7/2+)
Xe 54 56 109.94426(11) 93(3) ms α (64%) Te 0+
β (36%) I
Xe 54 57 110.94147(12)# 740(200) ms β (89.6%) I 5/2+#
α (10.4%) Te
Xe 54 58 111.9355591(89) 2.7(8) s β (98.8%) I 0+
α (1.2%) Te
Xe 54 59 112.9332217(73) 2.74(8) s β (92.98%) I 5/2+#
β, p (7%) Te
α (?%) Te
β, α (~0.007%) Sb
Xe 403.6(14) keV 6.9(3) μs IT Xe (11/2−)
Xe 54 60 113.927980(12) 10.0(4) s β I 0+
Xe 54 61 114.926294(13) 18(3) s β (99.66%) I (5/2+)
β, p (0.34%) Te
Xe 54 62 115.921581(14) 59(2) s β I 0+
Xe 54 63 116.920359(11) 61(2) s β I 5/2+
β, p (0.0029%) Te
Xe 54 64 117.916179(11) 3.8(9) min β I 0+
Xe 54 65 118.915411(11) 5.8(3) min β (79%) I 5/2+
EC (21%) I
Xe 54 66 119.911784(13) 46.0(6) min β I 0+
Xe 54 67 120.911453(11) 40.1(20) min β I 5/2+
Xe 54 68 121.908368(12) 20.1(1) h EC I 0+
Xe 54 69 122.908482(10) 2.08(2) h β I 1/2+
Xe 185.18(11) keV 5.49(26) μs IT Xe 7/2−
Xe 54 70 123.9058852(15) 1.8(5 (stat), 1 (sys))×10 y Double EC Te 0+ 9.5(5)×10
Xe 54 71 124.9063876(15) 16.87(8) h EC / β I 1/2+
Xe 252.61(14) keV 56.9(9) s IT Xe 9/2−
Xe 295.89(15) keV 0.14(3) μs IT Xe 7/2+
Xe 54 72 125.904297422(6) Observationally Stable 0+ 8.9(3)×10
Xe 54 73 126.9051836(44) 36.342(3) d EC I 1/2+
Xe 297.10(8) keV 69.2(9) s IT Xe 9/2−
Xe 54 74 127.9035307534(56) Stable 0+ 0.01910(13)
Xe 2787.2(3) keV 83(2) ns IT Xe 8−
Xe 54 75 128.9047808574(54) Stable 1/2+ 0.26401(138)
Xe 236.14(3) keV 8.88(2) d IT Xe 11/2−
Xe 54 76 129.903509346(10) Stable 0+ 0.04071(22)
Xe 54 77 130.9050841281(55) Stable 3/2+ 0.21232(51)
Xe 163.930(8) keV 11.948(12) d IT Xe 11/2−
Xe 54 78 131.9041550835(54) Stable 0+ 0.26909(55)
Xe 2752.21(17) keV 8.39(11) ms IT Xe (10+)
Xe 54 79 132.9059107(26) 5.2474(5) d β Cs 3/2+
Xe 233.221(15) keV 2.198(13) d IT Xe 11/2−
Xe 2147(20)# keV 8.64(13) ms IT Xe (23/2+)
Xe 54 80 133.905393030(6) Observationally Stable 0+ 0.10436(35)
Xe 1965.5(5) keV 290(17) ms IT Xe 7−
Xe 3025.2(15) keV 5(1) μs IT Xe (10+)
Xe 54 81 134.9072314(39) 9.14(2) h β Cs 3/2+
Xe 526.551(13) keV 15.29(5) min IT (99.70%) Xe 11/2−
β (0.30%) Cs
Xe 54 82 135 907214.474(7) 2.18(5)×10 y ββ Ba 0+ 0.08857(72)
Xe 1891.74(7) keV 2.92(3) μs IT Xe 6+
Xe 54 83 136.91155777(11) 3.818(13) min β Cs 7/2−
Xe 54 84 137.9141463(30) 14.14(7) min β Cs 0+
Xe 54 85 138.9187922(23) 39.68(14) s β Cs 3/2−
Xe 54 86 139.9216458(25) 13.60(10) s β Cs 0+
Xe 54 87 140.9267872(31) 1.73(1) s β (99.96%) Cs 5/2−
β, n (0.044%) Cs
Xe 54 88 141.9299731(29) 1.23(2) s β (99.63%) Cs 0+
β, n (0.37%) Cs
Xe 54 89 142.9353696(50) 511(6) ms β (99.00%) Cs 5/2−
β, n (1.00%) Cs
Xe 54 90 143.9389451(57) 0.388(7) s β (97.0%) Cs 0+
β, n (3.0%) Cs
Xe 54 91 144.944720(12) 188(4) ms β (95.0%) Cs 3/2−#
β, n (5.0%) Cs
Xe 54 92 145.948518(26) 146(6) ms β Cs 0+
β, n (6.9%) Cs
Xe 54 93 146.95448(22)# 88(14) ms β (>92%) Cs 3/2−#
β, n (<8%) Cs
Xe 54 94 147.95851(32)# 85(15) ms β Cs 0+
Xe 54 95 148.96457(32)# 50# ms
3/2−#
Xe 54 96 149.96888(32)# 40# ms
]
0+
This table header & footer:
  1. Xe – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Heaviest known isotope with equal numbers of protons and neutrons
  10. ^ Primordial radionuclide
  11. Suspected of undergoing DEC decay to Te
  12. Used in a method of radiodating groundwater and to infer certain events in the Solar System's history
  13. ^ Fission product
  14. Has medical uses
  15. Theoretically capable of undergoing ββ decay to Ba with a half-life over 2.8×10 years
  16. Most powerful known neutron absorber, produced in nuclear power plants as a decay product of I, itself a decay product of Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become Xe; see iodine pit for more information
  • The isotopic composition refers to that in air.

Xenon-124

Xenon-124 is an isotope of xenon that undergoes double electron capture to tellurium-124 with a very long half-life of 1.8×10 years, more than 12 orders of magnitude longer than the age of the universe ((13.799±0.021)×10 years). Such decays have been observed in the XENON1T detector in 2019, and are the rarest processes ever directly observed. (Even slower decays of other nuclei have been measured, but by detecting decay products that have accumulated over billions of years rather than observing them directly.)

Xenon-133

xenon-133, Xe
General
SymbolXe
Namesxenon-133, 133Xe, Xe-133
Protons (Z)54
Neutrons (N)79
Nuclide data
Natural abundancesyn
Half-life (t1/2)5.243(1) d
Isotope mass132.9059107 Da
Spin3/2+
Decay productsCs
Decay modes
Decay modeDecay energy (MeV)
Beta0.427
Isotopes of xenon
Complete table of nuclides

Xenon-133 (sold as a drug under the brand name Xeneisol, ATC code V09EX03 (WHO)) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs. It is also used to image blood flow, particularly in the brain. Xe is also an important fission product. It is discharged to the atmosphere in small quantities by some nuclear power plants.

Xenon-135

Main article: Xenon-135

Xenon-135 is a radioactive isotope of xenon, produced as a fission product of uranium. It has a half-life of about 9.2 hours and is the most powerful known neutron-absorbing nuclear poison (having a neutron absorption cross-section of 2 million barns). The overall yield of xenon-135 from fission is 6.3%, though most of this results from the radioactive decay of fission-produced tellurium-135 and iodine-135. Xe-135 exerts a significant effect on nuclear reactor operation (xenon pit). It is discharged to the atmosphere in small quantities by some nuclear power plants.

Xenon-136

Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11×10 years, more than 10 orders of magnitude longer than the age of the universe ((13.799±0.021)×10 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.

See also

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Observation of two-neutrino double electron capture in Xe with XENON1T". Nature. 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4.
  3. Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of Xe with the EXO-200 detector". Physical Review C. 89. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502.
  4. Redshaw, M.; Wingfield, E.; McDaniel, J.; Myers, E. (2007). "Mass and Double-Beta-Decay Q Value of Xe". Physical Review Letters. 98 (5): 53003. Bibcode:2007PhRvL..98e3003R. doi:10.1103/PhysRevLett.98.053003.
  5. "Standard Atomic Weights: Xenon". CIAAW. 1999.
  6. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  7. Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of Xe with the EXO-200 detector". Physical Review C. 89 (1): 015502. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502. Archived from the original on 2023-06-13. Retrieved 2023-01-24.
  8. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1 – 030003-442. doi:10.1088/1674-1137/41/3/030003.
  9. Status of ββ-decay in Xenon, Roland Lüscher, accessed online September 17, 2007. Archived September 27, 2007, at the Wayback Machine
  10. Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of Xe, Xe, and Xe with large scale Xe detectors". Journal of Physics G. 41 (11): 115105–1–115105–12. arXiv:1409.8308. Bibcode:2014JPhG...41k5105B. doi:10.1088/0954-3899/41/11/115105. S2CID 116264328.
  11. ^ Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502). arXiv:2312.15632. doi:10.1103/PhysRevLett.132.152502.
  12. Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic Sn" (PDF). Physical Review Letters. 121 (18): 182501. Bibcode:2018PhRvL.121r2501A. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.
  13. Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth". Science. 174 (4016): 1334–1336. Bibcode:1971Sci...174.1334B. doi:10.1126/science.174.4016.1334. PMID 17801897. S2CID 28159702.
  14. Ardoin, L.; Broadley, M.W.; Almayrac, M.; Avice, G.; Byrne, D.J.; Tarantola, A.; Lepland, A.; Saito, T.; Komiya, T.; Shibuya, T.; Marty, B. (2022). "The end of the isotopic evolution of atmospheric xenon". Geochemical Perspectives Letters. 20: 43–47. Bibcode:2022GChPL..20...43A. doi:10.7185/geochemlet.2207. S2CID 247399987.
  15. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  16. David Nield (26 Apr 2019). "A Dark Matter Detector Just Recorded One of The Rarest Events Known to Science".
  17. Hennecke, Edward W.; Manuel, O. K.; Sabu, Dwarka D. (1975). "Double beta decay of Te 128". Physical Review C. 11 (4): 1378–1384. doi:10.1103/PhysRevC.11.1378.
  18. Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133". Journal of Nuclear Medicine. 19 (10): 1187–1188. PMID 722337.
  19. Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP". Kaku Igaku. 24 (11): 1617–1623. PMID 3502279.
  20. ^ Effluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29.
  21. Chart of the Nuclides 13th Edition
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: