Misplaced Pages

Zhegalkin algebra

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Zhegalkin algebra" – news · newspapers · books · scholar · JSTOR (August 2024) (Learn how and when to remove this message)
Boolean algebra concept

In mathematics, Zhegalkin algebra is a set of Boolean functions defined by the nullary operation taking the value 1 {\displaystyle 1} , use of the binary operation of conjunction {\displaystyle \land } , and use of the binary sum operation for modulo 2 {\displaystyle \oplus } . The constant 0 {\displaystyle 0} is introduced as 1 1 = 0 {\displaystyle 1\oplus 1=0} . The negation operation is introduced by the relation ¬ x = x 1 {\displaystyle \neg x=x\oplus 1} . The disjunction operation follows from the identity x y = x y x y {\displaystyle x\lor y=x\land y\oplus x\oplus y} .

Using Zhegalkin Algebra, any perfect disjunctive normal form can be uniquely converted into a Zhegalkin polynomial (via the Zhegalkin Theorem).

Basic identities

  • x ( y z ) = ( x y ) z {\displaystyle x\land (y\land z)=(x\land y)\land z} , x y = y x {\displaystyle x\land y=y\land x}
  • x ( y z ) = ( x y ) z {\displaystyle x\oplus (y\oplus z)=(x\oplus y)\oplus z} , x y = y x {\displaystyle x\oplus y=y\oplus x}
  • x x = 0 {\displaystyle x\oplus x=0}
  • x 0 = x {\displaystyle x\oplus 0=x}
  • x ( y z ) = x y x z {\displaystyle x\land (y\oplus z)=x\land y\oplus x\land z}

Thus, the basis of Boolean functions , , 1 {\displaystyle {\bigl \langle }\wedge ,\oplus ,1{\bigr \rangle }} is functionally complete.

Its inverse logical basis , , 0 {\displaystyle {\bigl \langle }\lor ,\odot ,0{\bigr \rangle }} is also functionally complete, where {\displaystyle \odot } is the inverse of the XOR operation (via equivalence). For the inverse basis, the identities are inverse as well: 0 0 = 1 {\displaystyle 0\odot 0=1}  is the output of a constant, ¬ x = x 0 {\displaystyle \neg x=x\odot 0}  is the output of the negation operation, and x y = x y x y {\displaystyle x\land y=x\lor y\odot x\odot y} is the conjunction operation.

The functional completeness of the these two bases follows from completeness of the basis { ¬ , , } {\displaystyle \{\neg ,\land ,\lor \}} .

See also

References

Notes

  1. Zhegalkin, Ivan Ivanovich (1928). "The arithmetization of symbolic logic" (PDF). Matematicheskii Sbornik. 35 (3–4): 320. Retrieved 12 January 2024., additional text.
  2. Yu. V. Kapitonova, S.L. Krivoj, A. A. Letichevsky. Lectures on Discrete Mathematics. — SPB., BHV-Petersburg, 2004. — ISBN 5-94157-546-7, p. 110-111.

Further reading

Category: