Revision as of 05:03, 15 October 2018 editBrunoschalch (talk | contribs)6 edits Removed confusing and probably out of place sentence.← Previous edit | Latest revision as of 05:22, 6 November 2023 edit undoInternetArchiveBot (talk | contribs)Bots, Pending changes reviewers5,383,192 edits Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 | ||
(38 intermediate revisions by 28 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Software cost estimation model}} | |||
{{distinguish|Kokomo (disambiguation){{!}}Kokomo}} | {{distinguish|Kokomo (disambiguation){{!}}Kokomo|Docomo}} | ||
{{refimprove|date=October 2015}} | {{refimprove|date=October 2015}} | ||
The '''Constructive Cost Model''' ('''COCOMO''') is a procedural ] developed by ]. The model parameters are derived from fitting a ] formula using data from historical projects ( |
The '''Constructive Cost Model''' ('''COCOMO''') is a procedural ] developed by ]. The model parameters are derived from fitting a ] formula using data from historical projects (63 projects for COCOMO 81 and 163 projects for COCOMO II). | ||
== History == | == History == | ||
The constructive cost model was developed by Barry W. Boehm in the late 1970s<ref>{{cite web | The constructive cost model was developed by Barry W. Boehm in the late 1970s<ref>{{cite web | ||
|url=http://ece.arizona.edu/~ece473/readings/14-Software%20Estimating%20Technology.doc | |url=http://ece.arizona.edu/~ece473/readings/14-Software%20Estimating%20Technology.doc | ||
|title=Software Estimating Technology: A Survey | |title=Software Estimating Technology: A Survey | ||
|last=Stutzke | |last=Stutzke | ||
|first=Richard | |first=Richard | ||
|accessdate=9 Oct 2016 | |accessdate=9 Oct 2016 | ||
|archive-date=28 March 2020 | |||
⚫ | }}{{DOClink}}</ref> and published in Boehm's 1981 book ''Software Engineering Economics''<ref>{{cite book | ||
|archive-url=https://web.archive.org/web/20200328141813/https://uweb.engr.arizona.edu/~ece473/readings/14-Software%20Estimating%20Technology.doc | |||
|url-status=dead | |||
⚫ | }}{{DOClink}}</ref> and published in Boehm's 1981 book ''Software Engineering Economics''<ref>{{cite book | ||
|title = Software Engineering Economics | |title = Software Engineering Economics | ||
|url = https://archive.org/details/softwareengineer0000boeh | |||
|url-access = registration | |||
|last = Boehm | |last = Boehm | ||
|first = Barry | |first = Barry | ||
Line 24: | Line 29: | ||
COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. The first level, ''Basic COCOMO'' is good for quick, early, rough order of magnitude estimates of software costs, but its accuracy is limited due to its lack of factors to account for difference in project attributes (''Cost Drivers''). ''Intermediate COCOMO'' takes these Cost Drivers into account and ''Detailed COCOMO'' additionally accounts for the influence of individual project phases. | COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. The first level, ''Basic COCOMO'' is good for quick, early, rough order of magnitude estimates of software costs, but its accuracy is limited due to its lack of factors to account for difference in project attributes (''Cost Drivers''). ''Intermediate COCOMO'' takes these Cost Drivers into account and ''Detailed COCOMO'' additionally accounts for the influence of individual project phases. | ||
Last one is Complete COCOMO model which addresses the shortcomings of both basic & intermediate. | |||
== Basic MODEL == | |||
Basic COCOMO computes software development effort (and cost) as a function of program size. Program size is expressed in estimated thousands of source lines of code (], ]). | |||
COCOMO applies to three classes of software projects: | |||
* Organic projects - "small" teams with "good" experience working with "less than rigid" requirements | |||
* Semi-detached projects - "medium" teams with mixed experience working with a mix of rigid and less than rigid requirements | |||
* Embedded projects - developed within a set of "tight" constraints. It is also combination of organic and semi-detached projects.(hardware, software, operational, ...) | |||
The basic COCOMO equations take the form | |||
:Effort Applied (E) = a<sub>b</sub>(KLOC)<sup>b<sub>b</sub></sup> ]s ] | |||
:Development Time (D) = c<sub>b</sub>(Effort Applied)<sup>d<sub>b</sub></sup> | |||
:People required (P) = Effort Applied / Development Time | |||
where, | |||
KLOC is the estimated number of delivered lines (expressed in thousands ) of code for project. The coefficients ''a<sub>b</sub>'', ''b<sub>b</sub>'', ''c<sub>b</sub>'' and ''d<sub>b</sub>'' are given in the following table (note: the values listed below are from the original analysis, with a modern reanalysis<ref>{{cite web|url=http://shape-of-code.coding-guidelines.com/2016/05/19/cocomo-how-not-to-fit-a-model-to-data/|title=COCOMO: Not worth serious attention|publisher=The Shape of Code|date=19 May 2016|accessdate=4 November 2016}}</ref> producing different values): | |||
⚫ | {| class="wikitable" | ||
⚫ | ! |
||
⚫ | ! |
||
! ''b''<sub>''b''</sub> | |||
! ''c''<sub>''b''</sub> | |||
! ''d''<sub>''b''</sub> | |||
⚫ | |- | ||
⚫ | |||
| 2.4 | |||
| 1.05 | |||
| 2.5 | |||
| 0.38 | |||
⚫ | |- | ||
⚫ | |||
| 3.0 | |||
| 1.12 | |||
| 2.5 | |||
| 0.35 | |||
⚫ | |- | ||
⚫ | |||
| 3.6 | |||
| 1.20 | |||
| 2.5 | |||
| 0.32 | |||
⚫ | |} | ||
Basic COCOMO is good for quick estimate of software costs. However it does not account for differences in hardware constraints, personnel quality and experience, use of modern tools and techniques, and so on. | |||
== Intermediate COCOMOs == | == Intermediate COCOMOs == | ||
Line 95: | Line 57: | ||
{| class="wikitable" | {| class="wikitable" | ||
! rowspan="2" style="vertical-align:bottom" |Cost Drivers | |||
!colspan="6"|Ratings | !colspan="6"|Ratings | ||
|- | |- | ||
Line 105: | Line 67: | ||
|align="center" valign="bottom" width="10%"|Extra High | |align="center" valign="bottom" width="10%"|Extra High | ||
|- | |- | ||
! |
! {{rh}} colspan=7 |Product attributes | ||
|- | |- | ||
|Required software reliability | | Required software reliability | ||
|align="center"|0.75 | |align="center"|0.75 | ||
|align="center"|0.88 | |align="center"|0.88 | ||
Line 115: | Line 77: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Size of application database | | Size of application database | ||
|align="center"| | |align="center"| | ||
|align="center"|0.94 | |align="center"|0.94 | ||
Line 123: | Line 85: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Complexity of the product | | Complexity of the product | ||
|align="center"|0.70 | |align="center"|0.70 | ||
|align="center"|0.85 | |align="center"|0.85 | ||
Line 131: | Line 93: | ||
|align="center"|1.65 | |align="center"|1.65 | ||
|- | |- | ||
! |
! {{rh}} colspan=7 |Hardware attributes | ||
|- | |- | ||
|Run-time performance constraints | | Run-time performance constraints | ||
|align="center"| | |align="center"| | ||
|align="center"| | |align="center"| | ||
Line 141: | Line 103: | ||
|align="center"|1.66 | |align="center"|1.66 | ||
|- | |- | ||
|Memory constraints | | Memory constraints | ||
|align="center"| | |align="center"| | ||
|align="center"| | |align="center"| | ||
Line 149: | Line 111: | ||
|align="center"|1.56 | |align="center"|1.56 | ||
|- | |- | ||
|Volatility of the virtual machine environment | | Volatility of the virtual machine environment | ||
|align="center"| | |align="center"| | ||
|align="center"|0.87 | |align="center"|0.87 | ||
Line 157: | Line 119: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Required turnabout time | | Required turnabout time | ||
|align="center"| | |align="center"| | ||
|align="center"|0.87 | |align="center"|0.87 | ||
Line 165: | Line 127: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
! |
! {{rh}} colspan=7 |Personnel attributes | ||
|- | |- | ||
|Analyst capability | | Analyst capability | ||
|align="center"|1.46 | |align="center"|1.46 | ||
|align="center"|1.19 | |align="center"|1.19 | ||
Line 175: | Line 137: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Applications experience | | Applications experience | ||
|align="center"|1.29 | |align="center"|1.29 | ||
|align="center"|1.13 | |align="center"|1.13 | ||
Line 183: | Line 145: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Software engineer capability | | Software engineer capability | ||
|align="center"|1.42 | |align="center"|1.42 | ||
|align="center"|1.17 | |align="center"|1.17 | ||
Line 191: | Line 153: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Virtual machine experience | | Virtual machine experience | ||
|align="center"|1.21 | |align="center"|1.21 | ||
|align="center"|1.10 | |align="center"|1.10 | ||
Line 199: | Line 161: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Programming language experience | | Programming language experience | ||
|align="center"|1.14 | |align="center"|1.14 | ||
|align="center"|1.07 | |align="center"|1.07 | ||
Line 207: | Line 169: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
! |
! {{rh}} colspan=7 |Project attributes | ||
|- | |- | ||
|Application of software engineering methods | | Application of software engineering methods | ||
|align="center"|1.24 | |align="center"|1.24 | ||
|align="center"|1.10 | |align="center"|1.10 | ||
Line 217: | Line 179: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Use of software tools | | Use of software tools | ||
|align="center"|1.24 | |align="center"|1.24 | ||
|align="center"|1.10 | |align="center"|1.10 | ||
Line 225: | Line 187: | ||
|align="center"| | |align="center"| | ||
|- | |- | ||
|Required development schedule | | Required development schedule | ||
|align="center"|1.23 | |align="center"|1.23 | ||
|align="center"|1.08 | |align="center"|1.08 | ||
Line 236: | Line 198: | ||
The Intermediate Cocomo formula now takes the form: | The Intermediate Cocomo formula now takes the form: | ||
:''' |
:{{math|1=''E'' = {{abbr|''a''<sub>''i''</sub>|coefficient}}(KLoC){{sup|{{abbr|''b''{{sub|''i''}}|exponent}}}}(EAF)}} | ||
where E is the effort applied in person-months, '''KLoC''' is the estimated number of thousands of delivered lines of code for the project, and '''EAF''' is the factor calculated above. The coefficient |
where ''E'' is the effort applied in person-months, '''KLoC''' is the estimated number of thousands of delivered lines of code for the project, and '''EAF''' is the factor calculated above. The coefficient ''a<sub>i</sub>'' and the exponent ''b<sub>i</sub>'' are given in the next table. | ||
:{| class="wikitable" | :{| class="wikitable" | ||
Line 244: | Line 206: | ||
!width="20%"|a<sub>i</sub> | !width="20%"|a<sub>i</sub> | ||
!width="20%"|b<sub>i</sub> | !width="20%"|b<sub>i</sub> | ||
!width="20%"|c<sub>i</sub> | |||
|- | |- | ||
! Organic | |||
|align="center"|3.2 | |align="center"|3.2 | ||
|align="center"|1.05 | |align="center"|1.05 | ||
|align="center"|0.38 | |||
|- | |- | ||
! Semi-detached | |||
|align="center"|3.0 | |align="center"|3.0 | ||
|align="center"|1.12 | |align="center"|1.12 | ||
|align="center"|0.35 | |||
|- | |- | ||
! Embedded | |||
|align="center"|2.8 | |align="center"|2.8 | ||
|align="center"|1.20 | |align="center"|1.20 | ||
|align="center"|0.32 | |||
|} | |} | ||
The Development time |
The Development time ''D'' and also the most effective number of Persons ''P'' calculation uses ''E'' in the same way as in the Basic COCOMO: | ||
:{{math|1=''D'' = 2.5 ''E''{{sup|''c''{{sub|''i''}}}}}} | |||
== Detailed COCOMO == | |||
:{{tmath|1=P = E/D}} | |||
Note that in addition to the EAF, the parameter ''a<sub>i</sub>'' is different in ''Intermediate COCOMO'' from the Basic model: | |||
Detailed COCOMO incorporates all characteristics of the intermediate version with an assessment of the cost driver's impact on each step (analysis, design, etc.) of the software engineering process. | |||
⚫ | :{| class="wikitable" | ||
The detailed model uses different effort multipliers for each cost driver attribute. These '''Phase Sensitive''' effort multipliers are each to determine the amount of effort required to complete each phase. | |||
⚫ | !Software project | ||
In detailed cocomo, the whole software is divided into different modules and then we apply COCOMO in different modules to estimate effort and then sum the effort. | |||
⚫ | !width="20%"|''a<sub>b</sub>'' | ||
⚫ | |- | ||
The effort is calculated as a function of program size and a set of cost drivers are given according to each phase of the software life cycle. | |||
⚫ | ! Organic | ||
|align="center"|2.4 | |||
A Detailed project schedule is never static. | |||
⚫ | |- | ||
⚫ | ! Semi-detached | ||
|align="center"|3.0 | |||
⚫ | |- | ||
⚫ | ! Embedded | ||
|align="center"|3.6 | |||
⚫ | |} | ||
The parameters ''b'' and ''c'' are the same in both models. | |||
The Six phases of detailed COCOMO are:- | |||
* planning and requirements | |||
* system design | |||
* detailed design | |||
* module code and test | |||
* integration and test | |||
* Cost Constructive model | |||
== See also == | == See also == | ||
Line 290: | Line 258: | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | |||
== References == | == References == | ||
Line 311: | Line 280: | ||
== External links == | == External links == | ||
<!-- Do not add links to commercial products here - it will be deleted as SPAM --> | <!-- Do not add links to commercial products here - it will be deleted as SPAM --> | ||
* on tera-PROMISE | * on tera-PROMISE | ||
* obtains a different value for the Organic exponent. | * obtains a different value for the Organic exponent. | ||
Latest revision as of 05:22, 6 November 2023
Software cost estimation model Not to be confused with Kokomo or Docomo.This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "COCOMO" – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this message) |
The Constructive Cost Model (COCOMO) is a procedural software cost estimation model developed by Barry W. Boehm. The model parameters are derived from fitting a regression formula using data from historical projects (63 projects for COCOMO 81 and 163 projects for COCOMO II).
History
The constructive cost model was developed by Barry W. Boehm in the late 1970s and published in Boehm's 1981 book Software Engineering Economics as a model for estimating effort, cost, and schedule for software projects. It drew on a study of 63 projects at TRW Aerospace where Boehm was Director of Software Research and Technology. The study examined projects ranging in size from 2,000 to 100,000 lines of code, and programming languages ranging from assembly to PL/I. These projects were based on the waterfall model of software development which was the prevalent software development process in 1981.
References to this model typically call it COCOMO 81. In 1995 COCOMO II was developed and finally published in 2000 in the book Software Cost Estimation with COCOMO II. COCOMO II is the successor of COCOMO 81 and is claimed to be better suited for estimating modern software development projects; providing support for more recent software development processes and was tuned using a larger database of 161 projects. The need for the new model came as software development technology moved from mainframe and overnight batch processing to desktop development, code reusability, and the use of off-the-shelf software components.
COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. The first level, Basic COCOMO is good for quick, early, rough order of magnitude estimates of software costs, but its accuracy is limited due to its lack of factors to account for difference in project attributes (Cost Drivers). Intermediate COCOMO takes these Cost Drivers into account and Detailed COCOMO additionally accounts for the influence of individual project phases. Last one is Complete COCOMO model which addresses the shortcomings of both basic & intermediate.
Intermediate COCOMOs
Intermediate COCOMO computes software development effort as function of program size and a set of "cost drivers" that include subjective assessment of product, hardware, personnel and project attributes. This extension considers a set of four "cost drivers", each with a number of subsidiary attributes:-
- Product attributes
- Required software reliability extent
- Size of application database
- Complexity of the product
- Hardware attributes
- Run-time performance constraints
- Memory constraints
- Volatility of the virtual machine environment
- Required turnabout time
- Personnel attributes
- Analyst capability
- Software engineering capability
- Applications experience
- Virtual machine experience
- Programming language experience
- Project attributes
- Use of software tools
- Application of software engineering methods
- Required development schedule
Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low" to "extra high" (in importance or value). An effort multiplier from the table below applies to the rating. The product of all effort multipliers results in an effort adjustment factor (EAF). Typical values for EAF range from 0.9 to 1.4.
Cost Drivers | Ratings | |||||
---|---|---|---|---|---|---|
Very Low | Low | Nominal | High | Very High | Extra High | |
Product attributes | ||||||
Required software reliability | 0.75 | 0.88 | 1.00 | 1.15 | 1.40 | |
Size of application database | 0.94 | 1.00 | 1.08 | 1.16 | ||
Complexity of the product | 0.70 | 0.85 | 1.00 | 1.15 | 1.30 | 1.65 |
Hardware attributes | ||||||
Run-time performance constraints | 1.00 | 1.11 | 1.30 | 1.66 | ||
Memory constraints | 1.00 | 1.06 | 1.21 | 1.56 | ||
Volatility of the virtual machine environment | 0.87 | 1.00 | 1.15 | 1.30 | ||
Required turnabout time | 0.87 | 1.00 | 1.07 | 1.15 | ||
Personnel attributes | ||||||
Analyst capability | 1.46 | 1.19 | 1.00 | 0.86 | 0.71 | |
Applications experience | 1.29 | 1.13 | 1.00 | 0.91 | 0.82 | |
Software engineer capability | 1.42 | 1.17 | 1.00 | 0.86 | 0.70 | |
Virtual machine experience | 1.21 | 1.10 | 1.00 | 0.90 | ||
Programming language experience | 1.14 | 1.07 | 1.00 | 0.95 | ||
Project attributes | ||||||
Application of software engineering methods | 1.24 | 1.10 | 1.00 | 0.91 | 0.82 | |
Use of software tools | 1.24 | 1.10 | 1.00 | 0.91 | 0.83 | |
Required development schedule | 1.23 | 1.08 | 1.00 | 1.04 | 1.10 |
The Intermediate Cocomo formula now takes the form:
- E = ai(KLoC)(EAF)
where E is the effort applied in person-months, KLoC is the estimated number of thousands of delivered lines of code for the project, and EAF is the factor calculated above. The coefficient ai and the exponent bi are given in the next table.
Software project ai bi ci Organic 3.2 1.05 0.38 Semi-detached 3.0 1.12 0.35 Embedded 2.8 1.20 0.32
The Development time D and also the most effective number of Persons P calculation uses E in the same way as in the Basic COCOMO:
- D = 2.5 E
-
Note that in addition to the EAF, the parameter ai is different in Intermediate COCOMO from the Basic model:
Software project ab Organic 2.4 Semi-detached 3.0 Embedded 3.6
The parameters b and c are the same in both models.
See also
- Comparison of development estimation software
- Cost overrun
- COSYSMO
- Estimation in software engineering
- Function point
- Object point
- Putnam model
- SEER-SEM
- Software development effort estimation
- Software engineering economics
- PRICE Systems
References
- Stutzke, Richard. "Software Estimating Technology: A Survey". Archived from the original on 28 March 2020. Retrieved 9 Oct 2016.DOC
- Boehm, Barry (1981). Software Engineering Economics. Prentice-Hall. ISBN 0-13-822122-7.
- Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Bert Steece. Software Cost Estimation with COCOMO II (with CD-ROM). Englewood Cliffs, NJ:Prentice-Hall, 2000. ISBN 0-13-026692-2
Further reading
- Kemerer, Chris F. (May 1987). "An Empirical Validation of Software Cost Estimation Models" (PDF). Communications of the ACM. 30 (5): 416–42. doi:10.1145/22899.22906.
External links
- COCOMO 81 data on tera-PROMISE
- Analysis of the COCOMO 81 data obtains a different value for the Organic exponent.