Misplaced Pages

Michael Woodruff: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 11:40, 26 April 2007 edit62.173.89.10 (talk) Early life← Previous edit Latest revision as of 04:35, 7 August 2024 edit undoJJMC89 bot III (talk | contribs)Bots, Administrators3,671,278 editsm Moving Category:Former members of the Harveian Society of Edinburgh to Category:Members of the Harveian Society of Edinburgh per Misplaced Pages:Categories for discussion/Log/2024 July 30#Members of the Harveian Society of Edinburgh 
(369 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{pp-move}}
{{featured article}}
{{Short description|English surgeon and biologist; transplantation and cancer researcher (1911–2001)}}
{{Use dmy dates|date=October 2022}}
{{Use British English|date=June 2011}}


{{Infobox scientist
{{Infobox_Scientist
|honorific_prefix = Sir
| name = Michael Francis Addison Woodruff
| image = Sir_michael_woodruff.jpg |name = Michael Woodruff
|honorific_suffix = {{post-nominals|country=GBR|size=100%|FRS|FRSE|FRCS}}
| image_width = 192
| caption = Sir Michael Woodruff |image = Sir michael woodruff.jpg
| birth_date = ] ] |image_size = 192
|birth_date = {{birth date|1911|4|3|df=y}}
| birth_place = ], ]
| death_date = ] ] |birth_place = ], London, England
|death_date = {{death date and age|2001|3|10|1911|4|3|df=y}}
| death_place =
|death_place = ], Scotland<ref name=o />
| residence =
|nationality = <!-- use only when necessary per ] -->
| citizenship =
| nationality = ] |field = ]
|work_institution = Universities of ], ], ], ]
| ethnicity JAG ÄLSKAR gAY!!!!!!!!!!!!!!!!!!! =
| field = ] |alma_mater = ]
|awards = {{ubl|] (1969)|] (1969)}}
| work_institution =
| alma_mater =
| doctoral_advisor =
| doctoral_students =
| known_for =
| author_abbreviation_bot =
| author_abbreviation_zoo =
| prizes =
| religion =
| footnotes =
}} }}


] '''Michael Francis Addison Woodruff''' ] (] ] &ndash; ] ]) was a ]-born ] and ] principally remembered for his contributions to ]ation. Though born in ], Woodruff spent his youth in ], where he attended college and received a medical degree. Woodruff finished his medical studies shortly after the onset of ] and joined the ], but was soon captured by ] forces and imprisoned in the ]. While there, Woodruff devised an ingenious method of extracting ]s from agricultural wastes to prevent ] among his fellow ]. '''Sir Michael Francis Addison Woodruff''', {{post-nominals|country=GBR|size=100%|sep=,|FRS|FRSE|FRCS}} (3 April 1911&nbsp; 10 March 2001) was an English surgeon and scientist principally remembered for his research into ]. Though born in London, Woodruff spent his youth in Australia, where he earned degrees in ] and medicine. Having completed his studies shortly after the outbreak of ], he joined the ], but was soon captured by Japanese forces and imprisoned in the ] Camp. While there, he devised an ingenious method of extracting ]s from agricultural wastes to prevent ] among his fellow ].


At the conclusion of the war, Woodruff returned to Britain and began a long career as an academic surgeon, mixing ] work and ]. Over the course of several decades, Woodruff studied ], ], and other aspects of ] biology. His considerable contributions to the science of transplantation culminated on ] ] when he performed the first ] in the United Kingdom. For this and his other scientific contributions, Woodruff was elected as a ] in 1968 and a ] in 1969. Woodruff continued his surgical work until retiring in 1976, and remained active in the scientific community for many years afterward, researching ] and serving on the boards of various medical and scientific organizations. He died on ] ] at the age of 89. At the conclusion of the war, Woodruff returned to England and began a long career as an academic surgeon, mixing ] work and ]. Woodruff principally studied ] and ]. His work in these areas of transplantation biology led Woodruff to perform the first ] in the United Kingdom, on 30 October 1960. For this and his other scientific contributions, Woodruff was elected a ] in 1968 and made a ] in 1969. Although retiring from surgical work in 1976, he remained an active figure in the scientific community, researching cancer and serving on the boards of various medical and scientific organisations.


==Early life== == Early life ==
Michael Woodruff was born on 3 April 1911 in ],<ref>{{Cite web|url=https://www.freebmd.org.uk/cgi/information.pl?cite=xaxeyRXA0QbyCfOKs2EOAQ&scan=1|title=FreeBMD Entry Info|website=FreeBMD|access-date=9 March 2020}}</ref> London, England, the son of ] and his wife, Margaret Ada Cooper.<ref name="frs">{{Cite journal | last1 = Morris | first1 = P. | author-link1 = Peter Morris (surgeon)| doi = 10.1098/rsbm.2005.0030 | title = Sir Michael Francis Addison Woodruff. 3 April 1911 – 10 March 2001: Elected F.R.S. 1968 | journal = ] | volume = 51 | pages = 455–471 | year = 2005 | s2cid = 73171252 | doi-access = }}</ref> In 1913, his father, ], a professor of ] at the ] in London, moved the family to Australia so he could take up the post of Professor of Veterinary Pathology and Director of the Veterinary Institute at the University of Melbourne. The elder Woodruff later became the Professor of Bacteriology.<ref name="frs"/> The family's new life in Australia was interrupted by ], which prompted Harold to enlist in the armed services. He became an officer in the ] and was sent to Egypt.<ref>Morris, p. 457.</ref>
Michael Woodruff was born on ] ] in ], ], ].<ref> Biogr. Mems Fell. R. Soc. 51, 455–471 (2005). Morris, Peter. Available at Retrieved ] ]</ref> In 1913, his father, Harold Woodruff, a professor of ], moved the family to ]. The Woodruffs did briefly return to London during ], but Michael and his brother went back to ] in 1917 after their mother, Margaret, died. The two then spent a short time under the care of an aunt before being rejoined by their father.<ref name="NVNW">Woodruff, Michael. ''Nothing Venture Nothing Win''. Edinburgh: Scottish Academic Press, 1996. ISBN 0-7073-0737-6.</ref>


The remainder of the Woodruffs returned to London, and the two boys lived with their mother and paternal grandmother in the latter's residence in ]. Michael and his brother went back to Australia in 1917 after their mother, Margaret, died of a ] ]. The two then spent a short time under the care of an aunt before being rejoined by their father in 1917.<ref name="frs"/><ref name="NVNW">Woodruff, Michael. ''Nothing Venture Nothing Win''. Edinburgh: Scottish Academic Press, 1996. {{ISBN|0-7073-0737-6}}.</ref>
Other than his time in London and a single year in ], Michael spent all of his youth in Australia. Staying close to his family, he attended both ] in the Melbourne area, and enrolled in the ] for his post-secondary education. At the university, Woodruff studied ] and ], receiving some instruction from the influential physicist ].<ref name="MFAW"> Morris, Peter. . Retrieved ] ].</ref>


In 1919, Harold remarried and his new wife raised the children from his first marriage. The two boys did their early schooling at ] in Melbourne. From then on he spent all of his youth in Australia except for a year in Europe in 1924 when his father went on sabbatical leave at Paris's ]. During this time, Woodruff and his brother boarded at ] in ], Somerset on the south coast of England. The headmaster at the school regarded Australians as "colonials" who were "backward" and put Woodruff in a year level one year lower than appropriate.<ref name=m458/> Upon returning to Australia, Woodruff attended the private Methodist ], where he enjoyed mathematics and ].<ref name=m458>Morris, p. 458.</ref>
Despite success in engineering, Woodruff decided that he would have weak prospects as an engineer in Australia.<ref name="SM"> *Morris, Peter (2001). . ''The Royal Society of New Zealand''. Retrieved ] ].</ref> So, after graduating in 1933, he entered the medical program at the University of Melbourne. While at the University, he passed the primary exam for the ] in 1934. He finished the program in 1937 and received an ] with honors as well as two prizes in surgery. After graduation, he studied ] for one more year, and served as a house surgeon at the ].<ref name="MFAW"/>


He won a government scholarship to the ] and ], a university residential college.<ref name=m458/> Woodruff studied ] and ], receiving some instruction from the influential physicist ], then a tutor.<ref name="frs"/> Despite success in engineering, Woodruff decided that he would have weak prospects as an engineer in Australia because of the ].<ref name="o">{{Cite news |url=https://www.independent.co.uk/news/obituaries/professor-sir-michael-woodruff-728979.html |title=Professor Sir Michael Woodruff |last=Morris |first=Peter |date=31 March 2001 |work=The Independent |access-date=10 April 2010 |archive-url=https://web.archive.org/web/20100908100208/http://www.independent.co.uk/news/obituaries/professor-sir-michael-woodruff-728979.html |archive-date=8 September 2010 |url-status=dead |location=London}}</ref> He decided to take up medical studies at the end of his third year of undergraduate study, but his parents wanted him to finish his degree first. Despite his fears regarding his ability to succeed as an engineer, Woodruff placed first in his graduating class with first-class honours. He also completed two years of the maths program with first-class honours.<ref name=m458/>
==World War II==
At the outbreak of ], Woodruff joined the ]. He stayed in Melbourne until he finished his Master of Surgery Degree in 1941. At that time, he was assigned to the Tenth Australian Army General Hospital in ] as a ] in the Medical Corps. However, after the ], a Japanese offensive resulted in his capture.<ref name="SM" />
]


After graduating in 1933, he entered the medical program at the University of Melbourne. His mentors included anatomy professor ]. While at the university, he passed the primary exam for the ] in 1934, one of only four successful candidates who sat the examination in Melbourne that year. He finished the program in 1937 and received an ] with honours as well as two prizes in surgery. After graduation, he studied ] for one more year, and served as a house surgeon at the ].<ref name="frs"/> Woodruff then started his surgical training.<ref name=m458/>
After being captured, Woodruff was imprisoned in the ]. In the camp, Woodruff realized that his fellow prisoners were at great risk from ] due to the poor quality of the rations they were issued by the Japanese. To help fight this threat, Woodruff devised a method for extracting important nutrients from ], ]s, ]s, and agricultural wastes using old machinery that he found at the camp. Woodruff later published an account of his methods through the ] titled "Deficiency Diseases in Japanese Prison Camps".<ref name="NVNW" />


== World War II ==
At the conclusion of World War II, Woodruff returned to Melbourne to continue his surgical training. During his studies, he served as the surgical associate to ], and met Hazel Ashby. Ashby, a science student, made a great impression on Woodruff, and he married her in 1946.<ref name="MFAW" />
At the outbreak of ], Woodruff joined the ]. He stayed in Melbourne until he finished his ] Degree in 1941. At that time, he was assigned to the Tenth Australian Army General Hospital in ] as a ] in the Medical Corps. According to Woodruff, his time in Malaya was quiet and relatively leisurely as the war in the Pacific was yet to begin in earnest. The Japanese ] changed the situation and he was posted to a casualty clearing station where he worked as an anaesthetist, before being transferred into the Singapore General Hospital. A Japanese offensive resulted in the fall of Singapore and Woodruff was taken prisoner along with thousands of other Australian and British personnel.<ref name=o/><ref name=m459/>


]
==Early career==
Soon after his marriage, Woodruff decided to travel to England in order to take the second half of the ] Exam. Before departing, he applied for a position as a Tutor of Surgery at the ], and learned en route that the University had accepted his application. He took the FRCS exam in 1947 and passed, perhaps aided by the fact that one of his examiners, Julian Taylor, had been with him at Changi.<ref name= "SM" />


After being captured, Woodruff was imprisoned in the ]. In the camp, Woodruff realised that his fellow prisoners were at great risk from ] deficiencies due to the poor quality of the rations they were issued by the Japanese. To help fight this threat, Woodruff asked for permission from the Japanese to allow him to take responsibility for the matter, which was granted.<ref name=m459/> He devised a method for extracting important nutrients from grass, ]s, ]s, and agricultural wastes using old machinery that he found at the camp. Woodruff later published an account of his methods through the ] titled "Deficiency Diseases in Japanese Prison Camps".<ref name="NVNW"/> Woodruff remained a POW for three and a half years and later during this period he was sent to outlying POW camps to treat his comrades. As the prisoners were not allowed to be transferred, he had to improvise in his practice.<ref name=m459/> During this time he also read Maingot's surgery textbook, as a copy was in the camp, and he later said that reading about the fact that ]s were rejected a fortnight after being initially accepted, had stoked his interest in doing research on the topic.<ref name=m459>Morris, p. 459.</ref>
===Sheffield===
After passing his exam, Woodruff entered his position at Sheffield. Originally, he had planned to do surgical research, but Sheffield had no space for him in its surgical lab. Instead, Woodruff was given a place in the ] laboratory where he studied ], a process in which the ] of a transplant recipient attacks the transplanted tissue. Woodruff was particularly interested in ] ]s to the ] of the eye because they did not appear to meet with rejection.


While stationed at the River Valley Road prisoner of war hospital in Singapore in 1945, with the supplies of chemical anæsthetics severely restricted by the Japanese, Woodruff and a medical/dental colleague from the Royal Netherlands Forces successfully used ] for a wide range of dental and surgical procedures.<ref>Sampimon, R.L.H. & Woodruff, M.F.A., "Some Observations Concerning the use of Hypnosis as a Substitute for Anæsthesia", ''The Medical Journal of Australia'', (23 March 1946), pp. 393–395.</ref>
Woodruff's work with the allografts gave him a solid basis to work in the developing field of transplantion and rejection. To further himself in these areas, Woodruff arranged to meet ], an eminent zoologist and important pioneer in the study of rejection. The two men discussed ] and rejection, beginning a lasting professional relationship. Despite his achievements at Sheffield, Woodruff was rejected upon applying for a post at the ].<ref name ="MFAW" />


At the conclusion of World War II, Woodruff returned to Melbourne to continue his surgical training. During his studies, he served as the surgical associate to ]. This position was unpaid, so Woodruff accepted an appointment as a part-time pathology lecturer to support himself.<ref name=m460/> In January 1946, Woodruff participated in an Australian Student Christian Movement meeting, where he met Hazel Ashby, a science graduate from ]. She made a great impression on Woodruff, and he married her half a year later. The couple were research partners for the rest of their lives.<ref name="frs"/><ref name=m460>Morris, p. 460.</ref>
===Aberdeen===
In 1948, shortly after applying for the position in Melbourne, Woodruff moved from Sheffield to the ] where he was given a post as a senior lecturer.<ref name= "SM" /> At Aberdeen, Woodruff was given better laboratory access. He took advantage of this access and his wife's skills as a lab assistant to investigate '']'' grafts (tissue grafts performed while the recipient was still in the ]). At the time, the surgical community hypothesized that if a recipient were given ''in utero'' grafts, he would be able to receive tissue from the donor later in life without risk of rejection. Woodruff's experiments with ], however, produced negative results.


== Early career ==
While in Aberdeen, Woodruff also visited the ] on a ] Traveling Fellowship. During the visit, he met many of the leading American surgeons, an experience that increased his own desire to continue his work and research. After returning from the US, Woodruff experimented with the effects of ] and the impact of blood ] on rejection. As part of his blood antigen studies, Woodruff found two volunteers with identical blood antigens and arranged for them to exchange ]. When the grafts were rejected, Woodruff determined that rejection must be controlled by additional factors.<ref name="MFAW" />
Soon after his marriage, Woodruff travelled to England to take the second half of the ] Exam. Woodruff took his new wife over with no guarantee of employment, and declined a two-year travelling fellowship to ] offered by the Australian Red Cross because it required him to return home and work.<ref name=m461>Morris, p. 461.</ref> Before departing, he applied for a position as a Tutor of Surgery at the ], and learned en route that they had accepted his application. He took the FRCS exam in 1947 and passed—a result that, in Woodruff's view, was not hindered by the fact that one of his examiners, Colonel ], had been with him at Changi.<ref name=o/>


===Dunedin=== === Sheffield ===
After passing his exam, Woodruff entered his position at Sheffield, where he trained in emergency and elective surgery.<ref name=m461/> Originally, he had planned to do surgical research, but Sheffield had no space for him in its surgical lab. Instead, Woodruff was given a place in the ] laboratory where he studied ], a process in which the ] of a transplant recipient attacks the transplanted tissue. Woodruff was particularly interested in ] ]s to the ] of the eye because they did not appear to meet with rejection.<ref name=m461/> Woodruff's work with the allografts gave him a solid basis to work in the developing field of transplantion and rejection. To further himself in these areas, Woodruff arranged to meet ], an eminent zoologist and important pioneer in the study of rejection. The two men discussed ] and rejection, beginning a lasting professional relationship. Despite his achievements at Sheffield, Woodruff was rejected upon applying for a post at the ].<ref name="frs"/><ref name=m461/>
]
In 1953, Woodruff moved to ] to take up a position as the Chair of Surgery at the ], ]'s only ] at that time. While in Dunedin, Woodruff conducted research on the use of ]s (white blood cells) to increase tolerance for allografts in rats. This line of research proved to be largely unsuccessful, but some of Woodruff's other projects did well. Among his more important accomplishments in the period, Woodruff established a frozen skin bank for ] treatment and worked on the phenomenon known as runt disease (]).<ref name ="MFAW" />


==Edinburgh== === Aberdeen ===
In 1948, shortly after applying for the position in Melbourne, Woodruff moved from Sheffield to the ] where he was given a post as a senior lecturer,<ref name=o/> having not known where the Scottish city was beforehand.<ref name=m461/> At Aberdeen, Woodruff was given better laboratory access under Professor Bill Wilson, and was also awarded a grant that allowed his wife to be paid for her services.<ref>Morris, pp. 461–462.</ref> He took advantage of this access and his wife's skills as a lab assistant to investigate '']'' grafts (tissue grafts performed while the recipient was still in the ]). At the time, the surgical community hypothesized that if a recipient were given ''in utero'' grafts, he would be able to receive tissue from the donor later in life without risk of rejection. Woodruff's experiments with ] produced negative results.<ref name=m462/> Woodruff also commenced work on ] for ], with little initial success.<ref name=m462>Morris, p. 462.</ref>
]
In 1957, Woodruff was appointed to the Chair of Surgical Science at the ]. At the university, he split his time equally between his clinical and teaching responsibilities and his research. As a major part of his research, Woodruff served as the honorary director of a Research Group on Transplantation established by the ].


While in Aberdeen, Woodruff also visited the United States on a ] (WHO) Travelling Fellowship. During the visit, he met many of the leading American surgeons, an experience that increased his own desire to continue his work and research. After returning from the US, Woodruff experimented with the effects of ] and the impact of blood ] on rejection. As part of his blood antigen studies, Woodruff found two volunteers with identical blood antigens and arranged for them to exchange ]. When the grafts were rejected, Woodruff determined that rejection must be controlled by additional factors.<ref name="frs"/><ref name=m462/> In 1951 Woodruff was awarded a Hunterian Professorship of the Royal College of Surgeons of England for his lecture ''The transplantation of homologous tissue and its surgical application''.<ref name=m462/>
The research group's principal investigations concerned ] (the body's acceptance of tissues, as opposed to rejection), ] (especially in mice), and immune responses to ] in various animals. In his clinical role, Woodruff started a ] program and worked with the use of ] as a cancer treatment. However, his most important clinical accomplishments were in ].<ref name="MFAW" />


=== Dunedin ===
Most notably, he performed the first kidney transplant in the ] at the ].<ref> ''BBC Health''. Retrieved ] ].</ref> Woodruff had been waiting for the right patient for some time, hoping to find a patient with an ] to act as the donor, as this would significantly reduce the risk of rejection. The patient that Woodruff eventually found was a 49-year-old man suffering from severely impaired kidney function who received one of his identical twin brother's kidneys on ] ].<ref> . Retrieved ] ].</ref> That same year, Woodruff published ''The Transplantation of Tissues and Organs'', a comprehensive survey of transplant biology and one of seven books he wrote.<ref>{{cite web | title=Michael Francis Addison Woodruff Bibliography| work=The Royal Society | url=http://www.pubs.royalsoc.ac.uk/media/bio_mems/Woodruff%20biblio.pdf| accessdate = May 6 | accessyear=2006 }}</ref>
]


In 1953, Woodruff moved to ] in New Zealand to become Professor of Surgery at the ].<ref name=m462/> Woodruff had earlier failed in his applications for the corresponding position at St Mary's Hospital Medical School, London and ] in Scotland.<ref name=m462/> While in Dunedin, Woodruff conducted research on the use of ] to increase tolerance to allografts in rats. This line of research proved unsuccessful, but some of Woodruff's other projects did well. Among his more important accomplishments in the period, Woodruff established a frozen skin bank for ] treatment. As there was no plastic surgeon in Dunedin, Woodruff ended up being responsible for treating burns. He also worked on the phenomenon known as runt disease (]).<ref name="frs"/> Although Woodruff had been productive in his four years in New Zealand, Dunedin's population of 100,000 was insufficient to supply a clinical medical school, so he began to look for an appointment elsewhere.<ref name=m463>Morris, p. 463.</ref>
Woodruff retired from the University of Edinburgh in 1976 and joined the MRC Clinical and Population Cytogenetics Unit. He spent the next ten years there, engaged in cancer research with an emphasis on ]. During that time, Woodruff also published 25 papers and two books.<ref name = "MFAW" /> After retiring from his cancer research, Woodruff lived quietly with his wife in Edinburgh, traveling occasionally <ref name ="NVNW" /> until his death on ] ] at the age of 89.<ref name ="SM" />


==Importance== == Edinburgh ==
Woodruff's contributions to surgery were important and long-lasting. In addition to performing the first kidney transplant in the UK, he devised a method of implanting a transplanted ] in the ] during transplants that is still used today. Furthermore, he established a large, efficient transplant unit in Edinburgh that remains one of the world's best. Although best known for these clinical accomplishments, Woodruff's contributions to the study of rejection and tolerance induction were equally important. Among these contributions, Woodruff's work with ] has led to its wide use to reduce rejection symptoms in organ transplant recipients up to the current day.<ref name="MFAW" />


In 1957, Woodruff was appointed to the Chair of Surgical Science at the ] without requiring an interview.<ref name=m463/> At the university, he split his time equally between his clinical and teaching responsibilities and his research. He was also allowed to appoint two assistant researchers who went on to become prominent in their own right, ] and ]. As a major part of his research, Woodruff served as the honorary director of a Research Group on Transplantation established by the ].<ref name=m463/>
These important contributions to medicine and biology were first seriously honored in 1968 when Woodruff was elected to be a ]. The next year, 1969, Woodruff was ] by the Queen, a rare accomplishment for a surgeon. Additionally, numerous medical organizations gave Woodruff honorary membership, including the ], the American Surgical Association, and the ]. Woodruff also held office in several scientific organizations, serving as Vice-President of the ] and President of The Transplantation Society. Finally, Woodruff served for many years as a WHO advisor and as a ] at a number of universities.<ref name="MFAW" />


The research group's principal investigations concerned ] (the body's acceptance of tissues, as opposed to rejection), ] (especially in mice), and immune responses to cancer in various animals. In his clinical role, Woodruff started a ] program and worked with the use of ] as a cancer treatment as well as the treatment of autoimmune haemolytic anaemia. However, his most important clinical accomplishments were in ].<ref name="frs"/><ref name=m463/>
===Publications===
Woodruff's impact is also apparent in his large volume of publications. In addition to authoring over 200 scholarly papers, Woodruff wrote seven books during his career, covering numerous aspects of medicine and surgery.
*''Deficiency Diseases in Japanese Prison Camps''. M.R.C Special Report No. 274. H.M. Stationary Office, London 1951.
*''Surgery for Dental Students''. Blackwell, Oxford. (Fourth Ed., 1984 with H.E. Berry) 1954.
*''The Transplantation of Tissues and Organs''. Charles C. Thomas. Springfield, Illinois 1960.
*''The One and the Many: Edwin Stevens Lectures for the Laity''. Royal Society of Medicine, London 1970.
*''On Science and Surgery''. Edinburgh University Press, Edinburgh 1976.
*''The Interaction of Cancer and Host: Its Therapeutic Significance''. Grune Stratton, New York 1980.
*''Cellular Variation and Adaptation in Cancer: Biological Basis and Therapeutic Consequences''. Oxford University Press 1990.


]
==References==
<div class="references-small">
<references/>
</div>


Woodruff performed the first ever kidney transplant in the UK, at the ].<ref name=kidney/> He had been waiting for the right patient for some time, hoping to find a patient with an ] to act as the donor, as this would significantly reduce the risk of rejection. The patient that Woodruff eventually found was a 49-year-old man suffering from severely impaired kidney function who received one of his twin brother's kidneys on 30 October 1960. The donor kidney was harvested by ] and transplanted by Woodruff. Both twins lived an additional six years before dying of an unrelated disease.<ref name="kidney">{{Cite web |url=http://renux.dmed.ed.ac.uk/EdREN/Unitbits/historyweb/transplant.html#anchor11506296 |title=History of Kidney Transplantation in Edinburgh |archive-url=https://web.archive.org/web/20090206072831/http://renux.dmed.ed.ac.uk/edren/Unitbits/historyweb/transplant.html#anchor11506296 |archive-date=6 February 2009 |access-date=30 November 2008}}</ref> Woodruff thought that he had to be vigilant with his first kidney transplant, as he regarded the British medical community's attitude to be conservative towards transplantation.<ref name=m463/> From then until his retirement in 1976, he performed 127 kidney transplants.<ref name=m463/> Also in 1960, Woodruff published ''The Transplantation of Tissues and Organs'', a comprehensive survey of transplant biology and one of seven books he wrote.<ref name="frs"/> He was awarded the 1969 ] for his contributions to surgical science.<ref>{{cite journal | pmc = 2387642 | page=127 | volume=45 | issue=2 | journal=Ann R Coll Surg Engl | title=Lister Medal| year=1969 }}</ref> The corresponding Lister Oration, given at the ], was delivered on 8 April 1970, and was titled 'Biological aspects of individuality'.<ref>{{Cite journal | last1 = Woodruff | first1 = M. | title = Biological aspects of individuality | journal = Annals of the Royal College of Surgeons of England | volume = 47 | issue = 1 | pages = 1–13 | year = 1970 | pmid = 4393495 | pmc = 2387772}}</ref>
{{featured article}}


The success of Woodruff's clinical transplant program was recognised and enhanced by funding from the ] to construct and open the Nuffield Transplant Surgery Unit at the Western General Hospital in Edinburgh.<ref name=m464>Morris, p. 464.</ref> In 1970 an outbreak of ] struck the transplant unit, resulting in the death of several patients and four of Woodruff's employees due to fulminant hepatic failure. Woodruff was deeply shaken by the loss and the unit was closed for a period while an investigation was carried out to develop a contingency plan to avoid such a disaster in future. The unit then resumed operations.<ref name=m464/>
{{Persondata

|NAME=Woodruff, Michael Francis Addison
Woodruff retired from the University of Edinburgh in 1976,<ref name="frs" /> his role then being filled by Prof ],<ref>{{Cite journal|last=Blandy|first=John P.|date=1 April 1997|title=Geoffrey Duncan Chisholm|journal=British Journal of Urology|language=en|volume=79|issue=S2|pages=1–2|doi=10.1111/j.1464-410X.1997.tb16914.x|pmid=9158539|issn=1464-410X}}</ref> and joined the MRC Clinical and Population Cytogenetics Unit. He spent the next ten years there, engaged in cancer research with an emphasis on ] using ]. During that time, Woodruff also published twenty-five papers and two books.<ref name="frs"/> After retiring from his cancer research, Woodruff lived quietly with his wife in Edinburgh, travelling occasionally,<ref name="NVNW"/> until his death there on 10 March 2001, a month before his 90th birthday.<ref name=o/>
|ALTERNATIVE NAMES=

|SHORT DESCRIPTION=British surgeon and biologist; transplantation and cancer researcher
== Legacy ==
|DATE OF BIRTH=] ]
Woodruff's contributions to surgery were important and long-lasting. In addition to performing the first kidney transplant in the UK, he devised a method of implanting a transplanted ] in the ] during transplants that is still used today. He established a large, efficient transplant unit in Edinburgh that remains one of the world's best. Although best known for these clinical accomplishments, Woodruff's contributions to the study of rejection and tolerance induction were equally important. Among these contributions, Woodruff's work with ] has led to its wide use to reduce rejection symptoms in organ transplant recipients up to the current day.<ref name="frs"/>
|PLACE OF BIRTH=], ], ]

|DATE OF DEATH=] ]
These important contributions to medicine and biology were first seriously honoured in 1968 when Woodruff was elected to be a ]. The next year, 1969, Woodruff was ] by the Queen, a rare accomplishment for a surgeon. Numerous medical organisations gave Woodruff honorary membership, including the ], the American Surgical Association, and the ]. In 1958 he was elected a member of the ].<ref>{{Cite book|title=Minute Books of the Harveian Society|url=http://archives.rcpe.ac.uk/calmView/Record.aspx?src=CalmView.Catalog&id=DEP%2fHAR%2f1%2f1%2f1&pos=17|location= Library of the Royal College of Physicians of Edinburgh}}</ref> Woodruff also held office in several scientific organisations, serving as Vice-President of the ] and President of The Transplantation Society. Finally, Woodruff served for many years as a ] advisor and as a ] at a number of universities.<ref name=m467>Morris, p. 467.</ref>
|PLACE OF DEATH= ], ]

}}
Despite his profound influence on transplantation and what ] called "a commanding presence in any gathering",<ref name=m469/> Woodruff was not known for his ability as a lecturer as he had a rather uncertain style of presentation and a tendency to mumble.<ref name=m469/> Nevertheless, Morris said that Woodruff has "a great turn of phrase and a rather wicked sense of humour".<ref name=m469/> Morris concluded that "What is surprising is that he was not successful in producing many surgeons in his own mould, despite the intellectual talent that was entering surgery and especially transplantation in the 1960s. However, his influence in transplantation at all levels was enormous."<ref name=m469/>

=== Publications ===
Woodruff's impact is also apparent in his large volume of publications. In addition to authoring over two hundred scholarly papers,<ref>{{cite journal| title=Michael Francis Addison Woodruff Bibliography| journal= Biographical Memoirs of Fellows of the Royal Society | url=http://rsbm.royalsocietypublishing.org/content/suppl/2009/04/24/51.0.455.DC1/rsbm20050030.pdf | volume=51|pages=455–471|doi=10.1098/rsbm.2005.0030| year=2005 | last1=Morris | first1=P | s2cid= 73171252 | doi-access=free }}</ref> Woodruff wrote eight books during his career, covering numerous aspects of medicine and surgery.
* ''Deficiency Diseases in Japanese Prison Camps''. M.R.C Special Report No. 274. H.M. Stationery Office, London 1951.
* ''Surgery for Dental Students''. Blackwell, Oxford. (Fourth Ed., 1984 with H.E. Berry) 1954.
* ''The Transplantation of Tissues and Organs''. Charles C. Thomas. Springfield, Illinois 1960.
* ''The One and the Many: ]''. Royal Society of Medicine, London 1970.
* ''On Science and Surgery''. Edinburgh University Press, Edinburgh 1976.
* ''The Interaction of Cancer and Host: Its Therapeutic Significance''. Grune Stratton, New York 1980.
* ''Cellular Variation and Adaptation in Cancer: Biological Basis and Therapeutic Consequences''. Oxford University Press 1990.
* ''Nothing Venture Nothing Win''. Scottish Academic Press 1996. (autobiography)

== Personal life ==
In 1946 Woodruff married Hazel Gwenyth Ashby.<ref>{{cite book|title=Biographical Index of Former Fellows of the Royal Society of Edinburgh 1783–2002|date=July 2006|publisher=The Royal Society of Edinburgh|isbn=978-0-902198-84-5|url=https://www.royalsoced.org.uk/cms/files/fellows/biographical_index/fells_indexp2.pdf|access-date=11 September 2019|archive-url=https://web.archive.org/web/20160304074135/https://www.royalsoced.org.uk/cms/files/fellows/biographical_index/fells_indexp2.pdf|archive-date=4 March 2016|url-status=dead}}</ref>

The Woodruffs had two sons, followed by a daughter. Their first son completed a ] degree at ], where the daughter also attended, completing a science degree in ]. The second son did a medical degree at ] and became an ].<ref>{{cite book |last1=Woodruff |first1=Sir Michael |title=Nothing Venture Nothing Win |date=1996 |publisher=Scottish Academic Press |isbn=0-7073-0737-6 |page=145}}</ref> Woodruff and his wife were avid tennis players and had a court in their home in Edinburgh.<ref name=m469>Morris, p. 469.</ref> After moving to Edinburgh, Woodruff took up sailing with the Royal Forth Yacht Club, and went on to compete in some races. He owned a boat and was known to go sailing on it in the Mediterranean each summer with his wife. During his student years, Woodruff was a keen rower and ] player.<ref name=m469/>

Woodruff was a lover of classical music, and after taking up the organ at university and learning from ], the organist of ],<ref name=m458/> he became the college organist at Queen’s College in Melbourne; he later learned to play the piano.<ref name=m468/> In his spare time, Woodruff continued to pursue his love of ], especially ]. He periodically attempted to prove ], but failed.<ref name=m468>Morris, p. 468.</ref>

== References ==
{{reflist|30em}}

== Further reading ==
* , ''The Guardian''
* {{cite journal |vauthors=Leigh W |title=Sir Michael Francis Addison Woodruff (1911-2001) FRS DSc MD MS FRCS |journal=J Med Biogr |volume=19 |issue=1 |pages=21–5 |date=February 2011 |pmid=21350076 |doi=10.1258/jmb.2010.010018 |s2cid=207200478 |url=}}
* MacDonald H (October 2015). , ''Journal of British Studies''
{{Organ transplantation}}

{{Authority control}}


{{DEFAULTSORT:Woodruff, Michael}} {{DEFAULTSORT:Woodruff, Michael}}
]
]
]
] ]
]
]
] ]
] ]
] ]
]

]
{{transplants}}
]

] ]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 04:35, 7 August 2024

English surgeon and biologist; transplantation and cancer researcher (1911–2001)

SirMichael WoodruffFRS FRSE FRCS
Born(1911-04-03)3 April 1911
Mill Hill, London, England
Died10 March 2001(2001-03-10) (aged 89)
Edinburgh, Scotland
Alma materUniversity of Melbourne
Awards
Scientific career
FieldsOrgan transplantation
InstitutionsUniversities of Sheffield, Aberdeen, Otago, Edinburgh

Sir Michael Francis Addison Woodruff, FRS, FRSE, FRCS (3 April 1911 – 10 March 2001) was an English surgeon and scientist principally remembered for his research into organ transplantation. Though born in London, Woodruff spent his youth in Australia, where he earned degrees in electrical engineering and medicine. Having completed his studies shortly after the outbreak of World War II, he joined the Australian Army Medical Corps, but was soon captured by Japanese forces and imprisoned in the Changi Prison Camp. While there, he devised an ingenious method of extracting nutrients from agricultural wastes to prevent malnutrition among his fellow POWs.

At the conclusion of the war, Woodruff returned to England and began a long career as an academic surgeon, mixing clinical work and research. Woodruff principally studied transplant rejection and immunosuppression. His work in these areas of transplantation biology led Woodruff to perform the first kidney transplant in the United Kingdom, on 30 October 1960. For this and his other scientific contributions, Woodruff was elected a Fellow of the Royal Society in 1968 and made a Knight Bachelor in 1969. Although retiring from surgical work in 1976, he remained an active figure in the scientific community, researching cancer and serving on the boards of various medical and scientific organisations.

Early life

Michael Woodruff was born on 3 April 1911 in Mill Hill, London, England, the son of Harold Addison Woodruff and his wife, Margaret Ada Cooper. In 1913, his father, Harold Woodruff, a professor of veterinary medicine at the Royal Veterinary College in London, moved the family to Australia so he could take up the post of Professor of Veterinary Pathology and Director of the Veterinary Institute at the University of Melbourne. The elder Woodruff later became the Professor of Bacteriology. The family's new life in Australia was interrupted by World War I, which prompted Harold to enlist in the armed services. He became an officer in the Australian Army Veterinary Corps and was sent to Egypt.

The remainder of the Woodruffs returned to London, and the two boys lived with their mother and paternal grandmother in the latter's residence in Finchley. Michael and his brother went back to Australia in 1917 after their mother, Margaret, died of a staphylococcal septicaemia. The two then spent a short time under the care of an aunt before being rejoined by their father in 1917.

In 1919, Harold remarried and his new wife raised the children from his first marriage. The two boys did their early schooling at Trinity Grammar School in Melbourne. From then on he spent all of his youth in Australia except for a year in Europe in 1924 when his father went on sabbatical leave at Paris's Pasteur Institute. During this time, Woodruff and his brother boarded at Queen's College in Taunton, Somerset on the south coast of England. The headmaster at the school regarded Australians as "colonials" who were "backward" and put Woodruff in a year level one year lower than appropriate. Upon returning to Australia, Woodruff attended the private Methodist Wesley College, where he enjoyed mathematics and rowing.

He won a government scholarship to the University of Melbourne and Queen's College, a university residential college. Woodruff studied electrical engineering and mathematics, receiving some instruction from the influential physicist Harrie Massey, then a tutor. Despite success in engineering, Woodruff decided that he would have weak prospects as an engineer in Australia because of the Great Depression. He decided to take up medical studies at the end of his third year of undergraduate study, but his parents wanted him to finish his degree first. Despite his fears regarding his ability to succeed as an engineer, Woodruff placed first in his graduating class with first-class honours. He also completed two years of the maths program with first-class honours.

After graduating in 1933, he entered the medical program at the University of Melbourne. His mentors included anatomy professor Frederic Wood Jones. While at the university, he passed the primary exam for the Royal College of Surgeons in 1934, one of only four successful candidates who sat the examination in Melbourne that year. He finished the program in 1937 and received an MBBS with honours as well as two prizes in surgery. After graduation, he studied internal medicine for one more year, and served as a house surgeon at the Royal Melbourne Hospital. Woodruff then started his surgical training.

World War II

At the outbreak of World War II, Woodruff joined the Australian Army Medical Corps. He stayed in Melbourne until he finished his Master of Surgery Degree in 1941. At that time, he was assigned to the Tenth Australian Army General Hospital in British Malaya as a captain in the Medical Corps. According to Woodruff, his time in Malaya was quiet and relatively leisurely as the war in the Pacific was yet to begin in earnest. The Japanese attack on Pearl Harbor changed the situation and he was posted to a casualty clearing station where he worked as an anaesthetist, before being transferred into the Singapore General Hospital. A Japanese offensive resulted in the fall of Singapore and Woodruff was taken prisoner along with thousands of other Australian and British personnel.

A chapel built by Australian POWs at the Changi Prison Camp where Woodruff was held during World War II

After being captured, Woodruff was imprisoned in the Changi Prison Camp. In the camp, Woodruff realised that his fellow prisoners were at great risk from vitamin deficiencies due to the poor quality of the rations they were issued by the Japanese. To help fight this threat, Woodruff asked for permission from the Japanese to allow him to take responsibility for the matter, which was granted. He devised a method for extracting important nutrients from grass, soya beans, rice polishings, and agricultural wastes using old machinery that he found at the camp. Woodruff later published an account of his methods through the Medical Research Council titled "Deficiency Diseases in Japanese Prison Camps". Woodruff remained a POW for three and a half years and later during this period he was sent to outlying POW camps to treat his comrades. As the prisoners were not allowed to be transferred, he had to improvise in his practice. During this time he also read Maingot's surgery textbook, as a copy was in the camp, and he later said that reading about the fact that skin allografts were rejected a fortnight after being initially accepted, had stoked his interest in doing research on the topic.

While stationed at the River Valley Road prisoner of war hospital in Singapore in 1945, with the supplies of chemical anæsthetics severely restricted by the Japanese, Woodruff and a medical/dental colleague from the Royal Netherlands Forces successfully used hypnotism as the sole means of anæsthesia for a wide range of dental and surgical procedures.

At the conclusion of World War II, Woodruff returned to Melbourne to continue his surgical training. During his studies, he served as the surgical associate to Albert Coates. This position was unpaid, so Woodruff accepted an appointment as a part-time pathology lecturer to support himself. In January 1946, Woodruff participated in an Australian Student Christian Movement meeting, where he met Hazel Ashby, a science graduate from Adelaide. She made a great impression on Woodruff, and he married her half a year later. The couple were research partners for the rest of their lives.

Early career

Soon after his marriage, Woodruff travelled to England to take the second half of the FRCS Exam. Woodruff took his new wife over with no guarantee of employment, and declined a two-year travelling fellowship to Oxford University offered by the Australian Red Cross because it required him to return home and work. Before departing, he applied for a position as a Tutor of Surgery at the University of Sheffield, and learned en route that they had accepted his application. He took the FRCS exam in 1947 and passed—a result that, in Woodruff's view, was not hindered by the fact that one of his examiners, Colonel Julian Taylor, had been with him at Changi.

Sheffield

After passing his exam, Woodruff entered his position at Sheffield, where he trained in emergency and elective surgery. Originally, he had planned to do surgical research, but Sheffield had no space for him in its surgical lab. Instead, Woodruff was given a place in the pathology laboratory where he studied transplant rejection, a process in which the immune system of a transplant recipient attacks the transplanted tissue. Woodruff was particularly interested in thyroid allografts to the anterior chamber of the eye because they did not appear to meet with rejection. Woodruff's work with the allografts gave him a solid basis to work in the developing field of transplantion and rejection. To further himself in these areas, Woodruff arranged to meet Peter Medawar, an eminent zoologist and important pioneer in the study of rejection. The two men discussed transplantation and rejection, beginning a lasting professional relationship. Despite his achievements at Sheffield, Woodruff was rejected upon applying for a post at the Royal Melbourne Hospital.

Aberdeen

In 1948, shortly after applying for the position in Melbourne, Woodruff moved from Sheffield to the University of Aberdeen where he was given a post as a senior lecturer, having not known where the Scottish city was beforehand. At Aberdeen, Woodruff was given better laboratory access under Professor Bill Wilson, and was also awarded a grant that allowed his wife to be paid for her services. He took advantage of this access and his wife's skills as a lab assistant to investigate in utero grafts (tissue grafts performed while the recipient was still in the womb). At the time, the surgical community hypothesized that if a recipient were given in utero grafts, he would be able to receive tissue from the donor later in life without risk of rejection. Woodruff's experiments with rats produced negative results. Woodruff also commenced work on antilymphocyte serum for immunosuppression, with little initial success.

While in Aberdeen, Woodruff also visited the United States on a World Health Organization (WHO) Travelling Fellowship. During the visit, he met many of the leading American surgeons, an experience that increased his own desire to continue his work and research. After returning from the US, Woodruff experimented with the effects of cortisone and the impact of blood antigen on rejection. As part of his blood antigen studies, Woodruff found two volunteers with identical blood antigens and arranged for them to exchange skin grafts. When the grafts were rejected, Woodruff determined that rejection must be controlled by additional factors. In 1951 Woodruff was awarded a Hunterian Professorship of the Royal College of Surgeons of England for his lecture The transplantation of homologous tissue and its surgical application.

Dunedin

The University of Otago Dunedin School of Medicine, where Woodruff worked from 1953 to 1957

In 1953, Woodruff moved to Dunedin in New Zealand to become Professor of Surgery at the University of Otago. Woodruff had earlier failed in his applications for the corresponding position at St Mary's Hospital Medical School, London and St Andrews University in Scotland. While in Dunedin, Woodruff conducted research on the use of white blood cells to increase tolerance to allografts in rats. This line of research proved unsuccessful, but some of Woodruff's other projects did well. Among his more important accomplishments in the period, Woodruff established a frozen skin bank for burn treatment. As there was no plastic surgeon in Dunedin, Woodruff ended up being responsible for treating burns. He also worked on the phenomenon known as runt disease (graft versus host disease). Although Woodruff had been productive in his four years in New Zealand, Dunedin's population of 100,000 was insufficient to supply a clinical medical school, so he began to look for an appointment elsewhere.

Edinburgh

In 1957, Woodruff was appointed to the Chair of Surgical Science at the University of Edinburgh without requiring an interview. At the university, he split his time equally between his clinical and teaching responsibilities and his research. He was also allowed to appoint two assistant researchers who went on to become prominent in their own right, Donald Michie and James Howard. As a major part of his research, Woodruff served as the honorary director of a Research Group on Transplantation established by the Medical Research Council.

The research group's principal investigations concerned immunological tolerance (the body's acceptance of tissues, as opposed to rejection), autoimmune haemolytic anaemia (especially in mice), and immune responses to cancer in various animals. In his clinical role, Woodruff started a vascular surgery program and worked with the use of immunotherapy as a cancer treatment as well as the treatment of autoimmune haemolytic anaemia. However, his most important clinical accomplishments were in kidney transplantation.

Diagram illustrating a typical kidney transplant such as those Woodruff performed in Edinburgh

Woodruff performed the first ever kidney transplant in the UK, at the Royal Infirmary of Edinburgh. He had been waiting for the right patient for some time, hoping to find a patient with an identical twin to act as the donor, as this would significantly reduce the risk of rejection. The patient that Woodruff eventually found was a 49-year-old man suffering from severely impaired kidney function who received one of his twin brother's kidneys on 30 October 1960. The donor kidney was harvested by James Ross and transplanted by Woodruff. Both twins lived an additional six years before dying of an unrelated disease. Woodruff thought that he had to be vigilant with his first kidney transplant, as he regarded the British medical community's attitude to be conservative towards transplantation. From then until his retirement in 1976, he performed 127 kidney transplants. Also in 1960, Woodruff published The Transplantation of Tissues and Organs, a comprehensive survey of transplant biology and one of seven books he wrote. He was awarded the 1969 Lister Medal for his contributions to surgical science. The corresponding Lister Oration, given at the Royal College of Surgeons of England, was delivered on 8 April 1970, and was titled 'Biological aspects of individuality'.

The success of Woodruff's clinical transplant program was recognised and enhanced by funding from the Nuffield Foundation to construct and open the Nuffield Transplant Surgery Unit at the Western General Hospital in Edinburgh. In 1970 an outbreak of hepatitis B struck the transplant unit, resulting in the death of several patients and four of Woodruff's employees due to fulminant hepatic failure. Woodruff was deeply shaken by the loss and the unit was closed for a period while an investigation was carried out to develop a contingency plan to avoid such a disaster in future. The unit then resumed operations.

Woodruff retired from the University of Edinburgh in 1976, his role then being filled by Prof Geoffrey Duncan Chisholm, and joined the MRC Clinical and Population Cytogenetics Unit. He spent the next ten years there, engaged in cancer research with an emphasis on tumour immunology using Corynebacterium parvum. During that time, Woodruff also published twenty-five papers and two books. After retiring from his cancer research, Woodruff lived quietly with his wife in Edinburgh, travelling occasionally, until his death there on 10 March 2001, a month before his 90th birthday.

Legacy

Woodruff's contributions to surgery were important and long-lasting. In addition to performing the first kidney transplant in the UK, he devised a method of implanting a transplanted ureter in the bladder during transplants that is still used today. He established a large, efficient transplant unit in Edinburgh that remains one of the world's best. Although best known for these clinical accomplishments, Woodruff's contributions to the study of rejection and tolerance induction were equally important. Among these contributions, Woodruff's work with anti-lymphocyte serum has led to its wide use to reduce rejection symptoms in organ transplant recipients up to the current day.

These important contributions to medicine and biology were first seriously honoured in 1968 when Woodruff was elected to be a Fellow of the Royal Society. The next year, 1969, Woodruff was knighted by the Queen, a rare accomplishment for a surgeon. Numerous medical organisations gave Woodruff honorary membership, including the American College of Surgeons, the American Surgical Association, and the Royal College of Physicians of Edinburgh. In 1958 he was elected a member of the Harveian Society of Edinburgh. Woodruff also held office in several scientific organisations, serving as Vice-President of the Royal Society and President of The Transplantation Society. Finally, Woodruff served for many years as a WHO advisor and as a visiting professor at a number of universities.

Despite his profound influence on transplantation and what Peter Morris called "a commanding presence in any gathering", Woodruff was not known for his ability as a lecturer as he had a rather uncertain style of presentation and a tendency to mumble. Nevertheless, Morris said that Woodruff has "a great turn of phrase and a rather wicked sense of humour". Morris concluded that "What is surprising is that he was not successful in producing many surgeons in his own mould, despite the intellectual talent that was entering surgery and especially transplantation in the 1960s. However, his influence in transplantation at all levels was enormous."

Publications

Woodruff's impact is also apparent in his large volume of publications. In addition to authoring over two hundred scholarly papers, Woodruff wrote eight books during his career, covering numerous aspects of medicine and surgery.

  • Deficiency Diseases in Japanese Prison Camps. M.R.C Special Report No. 274. H.M. Stationery Office, London 1951.
  • Surgery for Dental Students. Blackwell, Oxford. (Fourth Ed., 1984 with H.E. Berry) 1954.
  • The Transplantation of Tissues and Organs. Charles C. Thomas. Springfield, Illinois 1960.
  • The One and the Many: Edwin Stevens Lectures for the Laity. Royal Society of Medicine, London 1970.
  • On Science and Surgery. Edinburgh University Press, Edinburgh 1976.
  • The Interaction of Cancer and Host: Its Therapeutic Significance. Grune Stratton, New York 1980.
  • Cellular Variation and Adaptation in Cancer: Biological Basis and Therapeutic Consequences. Oxford University Press 1990.
  • Nothing Venture Nothing Win. Scottish Academic Press 1996. (autobiography)

Personal life

In 1946 Woodruff married Hazel Gwenyth Ashby.

The Woodruffs had two sons, followed by a daughter. Their first son completed a civil engineering degree at Sheffield University, where the daughter also attended, completing a science degree in botany. The second son did a medical degree at University College London and became an ophthalmologist. Woodruff and his wife were avid tennis players and had a court in their home in Edinburgh. After moving to Edinburgh, Woodruff took up sailing with the Royal Forth Yacht Club, and went on to compete in some races. He owned a boat and was known to go sailing on it in the Mediterranean each summer with his wife. During his student years, Woodruff was a keen rower and field hockey player.

Woodruff was a lover of classical music, and after taking up the organ at university and learning from A. E. Floyd, the organist of St Paul's Cathedral, he became the college organist at Queen’s College in Melbourne; he later learned to play the piano. In his spare time, Woodruff continued to pursue his love of pure mathematics, especially number theory. He periodically attempted to prove Fermat's Last Theorem, but failed.

References

  1. ^ Morris, Peter (31 March 2001). "Professor Sir Michael Woodruff". The Independent. London. Archived from the original on 8 September 2010. Retrieved 10 April 2010.
  2. "FreeBMD Entry Info". FreeBMD. Retrieved 9 March 2020.
  3. ^ Morris, P. (2005). "Sir Michael Francis Addison Woodruff. 3 April 1911 – 10 March 2001: Elected F.R.S. 1968". Biographical Memoirs of Fellows of the Royal Society. 51: 455–471. doi:10.1098/rsbm.2005.0030. S2CID 73171252.
  4. Morris, p. 457.
  5. ^ Woodruff, Michael. Nothing Venture Nothing Win. Edinburgh: Scottish Academic Press, 1996. ISBN 0-7073-0737-6.
  6. ^ Morris, p. 458.
  7. ^ Morris, p. 459.
  8. Sampimon, R.L.H. & Woodruff, M.F.A., "Some Observations Concerning the use of Hypnosis as a Substitute for Anæsthesia", The Medical Journal of Australia, (23 March 1946), pp. 393–395.
  9. ^ Morris, p. 460.
  10. ^ Morris, p. 461.
  11. Morris, pp. 461–462.
  12. ^ Morris, p. 462.
  13. ^ Morris, p. 463.
  14. ^ "History of Kidney Transplantation in Edinburgh". Archived from the original on 6 February 2009. Retrieved 30 November 2008.
  15. "Lister Medal". Ann R Coll Surg Engl. 45 (2): 127. 1969. PMC 2387642.
  16. Woodruff, M. (1970). "Biological aspects of individuality". Annals of the Royal College of Surgeons of England. 47 (1): 1–13. PMC 2387772. PMID 4393495.
  17. ^ Morris, p. 464.
  18. Blandy, John P. (1 April 1997). "Geoffrey Duncan Chisholm". British Journal of Urology. 79 (S2): 1–2. doi:10.1111/j.1464-410X.1997.tb16914.x. ISSN 1464-410X. PMID 9158539.
  19. Minute Books of the Harveian Society. Library of the Royal College of Physicians of Edinburgh.
  20. Morris, p. 467.
  21. ^ Morris, p. 469.
  22. Morris, P (2005). "Michael Francis Addison Woodruff Bibliography" (PDF). Biographical Memoirs of Fellows of the Royal Society. 51: 455–471. doi:10.1098/rsbm.2005.0030. S2CID 73171252.
  23. Biographical Index of Former Fellows of the Royal Society of Edinburgh 1783–2002 (PDF). The Royal Society of Edinburgh. July 2006. ISBN 978-0-902198-84-5. Archived from the original (PDF) on 4 March 2016. Retrieved 11 September 2019.
  24. Woodruff, Sir Michael (1996). Nothing Venture Nothing Win. Scottish Academic Press. p. 145. ISBN 0-7073-0737-6.
  25. ^ Morris, p. 468.

Further reading

Organ transplantation
Types
Organs and tissues
Medical grafting
Organ donation
Complications
Transplant networks
and government
departments
Advocacy
organizations
Joint societies
Countries
People
Heart
Kidney
Liver
Lung
Pancreas
Penis
Other
Related topics
Categories: