Misplaced Pages

Stardust (spacecraft): Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:49, 21 March 2004 editRyjaz (talk | contribs)215 editsm thumbnailing← Previous edit Revision as of 14:56, 19 August 2024 edit undoPolyamorph (talk | contribs)Extended confirmed users, Page movers, Pending changes reviewers, Rollbackers29,869 editsm References: clean upTag: AWBNext edit →
(850 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|NASA sample-return mission to Comet 81P/Wild 2 (1999–2011)}}
] ] ] ]
'''Stardust''' is an interplanetary spacecraft launched ], ]. {{DISPLAYTITLE: ''Stardust'' (spacecraft)}}
{{Infobox spaceflight |auto=all
| name = ''Stardust''
| names_list = Discovery 4<br/>''Stardust-NExT''
| image = Stardust - Concepcao artistica.jpg
| image_caption = Artist's impression of ''Stardust'' collecting dust particles from Comet Wild&nbsp;2
| image_alt = A spacecraft is depicted following a comet from within its tail.
| image_size = 300px


| mission_type = ]
It flew by ] on ], ]. During the flyby it collected dust samples from the comet's ] and took detailed pictures of the ]'s icy nucleus. Sample material will be returned to ] with a capsule in ].
| operator = ]{{\}}]
| COSPAR_ID = 1999-003A
| SATCAT = 25618
| website =
| mission_duration = <small>Stardust:</small><br>{{time interval|7 Feb 1999|15 Jan 2006|sep=,}}<br/><small>NExT:</small><br>{{time interval|17 Jan 2007|24 Mar 2011|sep=,}}<br><small>Total:</small><br>{{time interval|7 Feb 1999|24 Mar 2011|sep=,}}


| spacecraft_bus = SpaceProbe<ref name=LaunchPressKit/>
Additionally, the spacecraft passed within 3300 km of the ] ] on ], ] and took several photographs.
| manufacturer = ]<br/>]
| launch_mass = {{cvt|385|kg|lb}}<ref name=Stardust/>
| dry_mass = {{cvt|305.397|kg|lb}}<ref name=pds.inst.sdu/>
| payload_mass =
| dimensions = Bus: {{convert|5.6|xx|2.16|xx|2.16|ft|m|order=flip|abbr=on|disp=x|<ref name=LaunchPressKit/><br/>(|)}}
| power = 330&nbsp;] (] / ])


| launch_date = {{start date text|7 February 1999, 21:04:15.238}}&nbsp;]<ref name=nssdc-003a/>
]
| launch_rocket = ] 7426-9.5<br>D-266
| launch_site = ] ]
| launch_contractor = ]
| entered_service =


| disposal_type = Decommissioned
==The craft==
| deactivated = Spacecraft: {{end date text|24 March 2011, 23:33}}&nbsp;UTC<ref name=nasa20110325/>
| landing_date = Capsule: 15 January 2006, 10:12&nbsp;UTC<ref name=newsci20060115/>
| landing_site = ]<br/>{{coord|40|21.9|N|113|31.3|W}}


|interplanetary =
The mission ] is derived from the ] deep space bus developed by ] Astronautics. This new lightweight spacecraft incorporates components, virtually all of which are either currently operating in space or are flight qualified and manifested to fly on upcoming missions.
{{Infobox spaceflight/IP
|type = flyby
|object = ]
|arrival_date = 15 January 2001, 11:14:28 &nbsp;UTC
|distance = {{cvt|6008|km|mi}}
}}
{{Infobox spaceflight/IP
|type = flyby
|object = asteroid ]
|arrival_date = 2 November 2002, 04:50:20&nbsp;UTC<ref name=info-stardust/>
|distance = {{cvt|3079|km|mi}}<ref name=info-stardust/>
}}
{{Infobox spaceflight/IP
|type = flyby
|object = ]
|arrival_date = 2 January 2004, 19:21:28&nbsp;UTC<ref name=info-stardust/>
|distance = {{cvt|237|km|mi}}<ref name=info-stardust/>
}}
{{Infobox spaceflight/IP
|type = flyby
|object = ]
|note = Sample return
|arrival_date = 15 January 2006
}}
{{Infobox spaceflight/IP
|type = flyby
|object = ]
|arrival_date = 14 January 2009, 12:33 &nbsp;UTC
|distance = {{cvt|9157|km|mi}}
}}
{{Infobox spaceflight/IP
|type = flyby
|object = ]
|arrival_date = 15 February 2011, 04:39:10&nbsp;UTC<ref name=info-next/>
|distance = {{cvt|181|km|mi}}<ref name=nasa20110214/>
}}


| instruments_list = {{Infobox spaceflight/Instruments
The total weight of the spacecraft including the propellant needed for deep space maneuvers is 380 kilograms. The overall length of the main bus is 1.7 meters, about the size of an average office desk.
| acronym1 = CIDA | name1 = Comet and Interstellar Dust Analyzer
| acronym2 = DFMI | name2 = Dust Flux Monitor Instrument
| acronym3 = SSC | name3 = Stardust Sample Collection
| acronym4 = DSE | name4 = Dynamic Science Experiment
| acronym5 = NavCam | name5 = Navigation Camera
}}


| programme = ''']'''
Stardust runs a ] ].
| previous_mission = ]
| next_mission = ]


| insignia = ] ]
==Science payload==
}}
===Aerogel sample collectors===
'''''Stardust''''' was a 385-kilogram ] ] launched by ] on 7 February 1999. Its primary mission was to collect dust samples from the ] of ] ], as well as samples of ], and return them to Earth for analysis. It was the first ] of its kind. En route to Comet Wild&nbsp;2, it also flew by and studied the ] ]. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.<ref name=route/>
Comet and interstellar particles are collected in ultra low density ]. More than 1,000 square centimeters of collection area is provided for each type of particle (cometary and interstellar).


A mission extension, codenamed ''NExT'', culminated in February 2011 with ''Stardust'' intercepting Comet ], a ] previously visited by '']'' in 2005. ''Stardust'' ceased operations in March 2011.
When the spacecraft flew past the comet, the impact velocity of the particles they are captured was up to nine times the speed of a bullet fired from a rifle. Although the captured particles were each smaller than a grain of sand, high-speed capture could alter their shape and chemical composition - or vaporize them entirely.


On 14 August 2014, scientists announced the identification of possible ] particles from the ''Stardust'' capsule returned to Earth in 2006.<ref name=NASA-20140814/><ref name=AP-20140814/><ref name=SCI-20140814/><ref name=SCI-20140815/>
To collect the particles without damaging them, a ]-based solid with a porous, ]-like structure is used in which 99 percent of the volume is empty space. Aerogel is 1,000 times less dense than ], another silicon-based solid. When a particle hits the aerogel, it will bury itself in the material, creating a carrot-shaped track up to 200 times its own length, as it slows down and comes to a stop - like an airplane setting down on a runway and braking to reduce its speed gradually. Since aerogel is mostly transparent - sometimes called "blue smoke" - scientists will use these tracks to find the tiny particles.


==Mission background==
===Comet and Interstellar Dust Analyzer (CIDA)===
===History===
The CIDA instrument is a time-of-flight ] that determines the composition of individual dust grains which collide with a ] ].
Beginning in the 1980s, scientists began seeking a dedicated mission to study a comet. During the early 1990s, several missions to study ] became the first successful missions to return close-up data. However, the US cometary mission, ], was canceled for budgetary reasons. In the mid-1990s, further support was given to a cheaper, ] mission that would study Comet Wild&nbsp;2 in 2004.<ref name=LaunchPressKit/>


''Stardust'' was competitively selected in the fall of 1995 as a NASA Discovery Program mission of low-cost with highly focused science goals.<ref name=LaunchPressKit/>{{rp|5}} Construction of ''Stardust'' began in 1996, and was subject to the maximum contamination restriction, level&nbsp;5 ]. However, the risk of interplanetary contamination by alien life was judged low,<ref name=nasa_life/> as particle impacts at over {{convert|1000|mph|m/s|order=flip}}, even into ], were believed to be terminal for any known microorganism.<ref name=LaunchPressKit/>{{rp|22–23}}
The purpose of the Cometary and Interstellar Dust Analyzer (CIDA) instrument on Stardust is to intercept and perform real-time compositional analysis of dust as it is encountered by the spacecraft for transmission back to Earth.


Comet ] was selected as the primary target of the mission for the rare chance to observe a long-period comet that has ventured close to the ]. The comet has since become a short period comet after an event in 1974, where the orbit of Wild&nbsp;2 was affected by the gravitational pull of ], moving the orbit inward, closer to the Sun. In planning the mission, it was expected that most of the original material from which the comet formed would still be preserved.<ref name=LaunchPressKit/>{{rp|5}}
The CIDA separates ]s' masses by comparing differences in their flight times. The operating principle of the instrument is the following: when a dust particle hits the target of the instrument, ions are extracted from it by the ]. Depending on the ] of the target positive or negative ions can be extracted. The extracted ions move through the instrument, are reflected in the reflector, and detected in the detector. Heavier ions take more time to travel through the instrument than lighter ones, so the flight times of the ions are then used to calculate their ]es.


The primary science objectives of the mission included:<ref name=info-stardust/>
The CIDA is the same instrument design as flew on ] and two ] where it obtained unique data on the chemical composition of individual particulates in ] coma. It consists of an inlet, a target, an ion extractor, a time-of-flight (TOF) mass spectrometer (MS) and an ion detector.
*Providing a flyby of a comet of interest (Wild&nbsp;2) at a sufficiently low velocity (less than 6.5&nbsp;km/s) such that non-destructive capture of comet dust is possible using an aerogel collector.
*Facilitating the intercept of significant numbers of interstellar dust particles using the same collection medium, also at as low a velocity as possible.
*Returning as many high-resolution images of the comet coma and nucleus as possible, subject to the cost constraints of the mission.


The spacecraft was designed, built and operated by ] Astronautics as a Discovery-class mission in Denver, Colorado. JPL provided mission management for the NASA division for mission operations. The principal investigator of the mission was Dr.&nbsp;Donald Brownlee from the University of Washington.<ref name=LaunchPressKit/>{{rp|5}}
The co-investigator in charge of the CIDA is ] of ] in ] where the instrument has been developed. Electronics hardware has been built by ] in ]. Software for the CIDA instrument is being developed by The ].
===Navigation camera (NavCam)===
The Navigation camera is used for targeting the flyby of the Wild 2 nucleus, but also provides high-resolution science images of the comet.


===Spacecraft design===
The Navigation Camera (NC), an engineering subsystem, was used to optically navigate the spacecraft upon approach to the comet. This allowed the spacecraft to achieve the proper flyby distance, near enough to the nucleus, to assure adequate dust collection. The camera also served as an imaging camera to collect science data. The data includes high-resolution color images of the comet nucleus, on approach and on departure, and broadband images at various phase angles while nearby. These images will be used to construct a 3-D map of the nucleus in order to better understand its origin, morphology, and mechanisms, to search for mineralogical inhomogeneities on the nucleus, and potentially to supply information on the nucleus rotation state. The camera will provide images, taken through different filters, that will give information on the gas and dust coma during approach and departure phases of the mission. These images will provide information on gas composition, gas and dust dynamics, and jet phenomena, if they exist.
The spacecraft bus measured {{convert|1.7|m|sp=us}} in length, and {{convert|0.66|m|sp=us}} in width, a design adapted from the SpaceProbe deep space bus developed by ]. The bus was primarily constructed with ] panels with an aluminum honeycomb support structure underneath; the entire spacecraft was covered with polycyanate, ] sheeting for further protection. To maintain low costs, the spacecraft incorporated many designs and technologies used in past missions or previously developed for future missions by the Small Spacecraft Technologies Initiative (SSTI). The spacecraft featured five scientific instruments to collect data, including the ''Stardust'' Sample Collection tray, which was brought back to Earth for analysis.<ref name=Stardust:Spacecraft/>


===Dust shield and monitors=== ====Attitude control and propulsion====
The spacecraft was ] with eight 4.41&nbsp;] ] ] ], and eight 1&nbsp;N thrusters to maintain ] (orientation); necessary minor propulsion maneuvers were performed by these thrusters as well. The spacecraft was launched with 80&nbsp;kilograms of propellant. Information for spacecraft positioning was provided by a ] using FSW to determine attitude (Stellar Compass), an ], and two ].<ref name=LaunchPressKit/>{{rp|30–31}}<ref name=Stardust:Spacecraft/> The Stellar Compass software was provided by Intelligent Decisions, Inc.
====Whipple shield====
The Whipple shield is designed to shadow the spacecraft to protect it during the high speed encounter with particles in the cometary coma. Bumper shields are composite panels which disrupt particles as they impact.


====Communications====
Nextel blankets of ] further dissipate and spread the particle debris. Three blankets are used in the main body shield, and two are used in the solar array shields. The composite catcher absorbs all of the debris for solid particles up to 1 cm in diameter for the shield protecting the spacecraft main body.
For communicating with the ], the spacecraft transmitted data across the ] using a {{convert|0.6|m|adj=on|sp=us}} parabolic ], medium-gain antenna (MGA) and low-gain antennas (LGA) depending on mission phase, and a 15-watt ] design originally intended for the ].<ref name=LaunchPressKit/>{{rp|32}}<ref name=Stardust:Spacecraft/>


====Dust Flux Monitors (DFM)==== ====Power====
The probe was powered by two ], providing an average of 330&nbsp;watts of power. The arrays also included ]s to protect the delicate surfaces from the potentially damaging cometary dust while the spacecraft was in the coma of Wild&nbsp;2. The solar array design was derived primarily from the Small Spacecraft Technology Initiative (SSTI) spacecraft development guidelines. The arrays provided a unique method of switching strings from series to parallel depending on the distance from the Sun. A single ] was also included to provide the spacecraft with power when the solar arrays received too little sunlight.<ref name=LaunchPressKit/>{{rp|31}}<ref name=Stardust:Spacecraft/>
The DFM instrument, mounted on the front of the Whipple shield, monitors the flux and size distribution of particles in the environment.


====Computer====
Developed under the direction of ] at the ], the DFMI is a highly sensitive instrument designed to detect particles as small as a few micrometres. It is based on a very special polarized plastic (PVDF) that generates electrical pulses when impacted or penetrated by small high speed particles.
The computer on the spacecraft operated using a ] ] 32-bit processor card. For ] when the spacecraft was unable to communicate with Earth, the processor card was able to store 128&nbsp;]s, 20% of which was occupied by the flight system software. The system software is a form of ], an ] developed by ].<ref name=LaunchPressKit/>{{rp|31}}<ref name=Stardust:Spacecraft/>


====Scientific instruments====
The Dust Flux Monitor Instrument (DFMI) consists of a Sensor Unit (SU), Electronics Box (EB), and the two acoustic sensors mounted to the Stardust spacecraft. The SU is mounted to the Whipple shield, and the EB is mounted internally to the spacecraft enclosure.
{| class="wikitable"
|-
| colspan="2" style="background: #f2f2f2" | Navigation Camera ('''NC''')
|-
| ]
| The camera is intended for targeting comet Wild&nbsp;2 during the flyby of the nucleus. It captures black and white images through a filter wheel making it possible to assemble color images and detect certain gas and dust emissions in the coma. It also captures images at various ], making it possible to create a three-dimensional model of a target to better understand the origin, morphology, and mineralogical inhomogeneities on the surface of the nucleus. The camera utilizes the optical assembly from the ] Wide Angle Camera. It is additionally fitted with a scanning mirror to vary the viewing angle and avoid potentially damaging particles. For environmental testing and verification of the NAVCAM the only remaining Voyager spare camera assembly was used as a collimator for testing of the primary imaging optics. A target at the focal point of the spare was imaged through the optical path of the NAVCAM for verification.<ref name=Camera/><ref name=NSSDCNC/>
<!--Objectives collapsible-->
{| class="wikitable collapsible collapsed"
|-
! Objectives<ref name=Camera/>
|-
|
* Determine the position of Comet P/Wild&nbsp;2 during the approach and encounter
* Obtain high resolution images of the nucleus
|}
*<small>'''Lead investigator:''' Ray Newburn / JPL <!--()--></small>
*<small>'''Data:''' </small>
|-
| colspan="2" style="background: #f2f2f2" | Cometary and Interstellar Dust Analyzer ('''CIDA''')
|-
| {{center|]}}
| The dust analyzer is a ] able to provide real-time detection and analysis of certain compounds and elements. Particles enter the instrument after colliding with a ] ] and traveling down a tube to the detector. The detector is then able to detect the mass of separate ions by measuring the time taken for each ion to enter and travel through the instrument. Identical instruments were also included on ] and ].<ref name=CIDA/><ref name=NSSDCCIDA/>
<!--Objectives collapsible-->
{| class="wikitable collapsible collapsed"
|-
! Objectives<ref name=CIDA/>
|-
|
*
|}
*<small>'''Lead investigator:''' Jochen Kissel / Max-Planck-Institut fur Aeronomie ( -archived)</small>
*<small>'''Data:''' PDS/SBN data archives: , , , </small>
|-
| colspan="2" style="background: #f2f2f2" | Dust Flux Monitor Instrument ('''DFMI''')
|-
| ]
| Located on the ] at the front of the spacecraft, the sensor unit provides data regarding the flux and size distribution of particles in the environment around Wild&nbsp;2. It records data by generating electric pulses as a special polarized plastic (PVDF) sensor is struck by high energy particles as small as a few micrometers.<ref name=DFMI/><ref name=NSSDCDFMI/>
<!--Objectives collapsible-->
{| class="wikitable collapsible collapsed"
|-
! Objectives<ref name=DFMI/>
|-
|
* Record quantitative measurements of the particle impact rate and particle mass distribution throughout the flyby of Comet ].
* Establish the physical processes of dust emission from the nucleus, their propagation to form a coma, and the behavior of dust jets.
* Provide measurements of the dust flux at least once per second, and up to 10 times per second.
* Provide important information on the dust environment relevant to engineering concerns for spacecraft health and interpretation of anomalies.
|}
*<small>'''Lead investigator:''' Anthony Tuzzolino / University of Chicago ()</small>
*<small>'''Data:''' , </small>
|-
| colspan="2" style="background: #f2f2f2" | Stardust Sample Collection ('''SSC''')
|-
| ]
| The particle collector uses ], a low-density, inert, microporous, silica-based substance, to capture dust grains as the spacecraft passes through the coma of Wild&nbsp;2. After sample collection was complete, the collector receded into the Sample Return Capsule for entering the Earth's atmosphere. The capsule with encased samples would be retrieved from Earth's surface and studied.<ref name=SSC/><ref name=NSSDCSSC/>
<!--Objectives collapsible-->
{| class="wikitable collapsible collapsed"
|-
! Objectives<ref name=SSC/>
|-
|
*Determine the elemental, chemical, and mineralogical composition of Wild&nbsp;2 at the submicron scale.
*Determine which compounds dominate the organic fraction of Wild&nbsp;2.
*Establish the building materials of Wild&nbsp;2 found in interplanetary dust particles (IDP) and meteorites.
*Determine the extent of the building materials of Wild&nbsp;2 found in interplanetary dust particles (IDP) and meteorites.
*Establish if IDPs are consistent with Wild&nbsp;2 samples.
*Determine if pyroxenerich chondritic aggregate IDPs are cometary.
*Establish if amino acids, quinones, amphiphiles, or other molecules of exobiological interest are present.
*Determine the state of {{chem2|H2O}} in Wild&nbsp;2.
*Determine if there was mixing of inner nebula materials (i.e., high-temperature condensates) in the region of comet formation in the outer nebula.
*Characterize isotopic anomalies present which could provide signatures of the place of origin of interstellar grains
*Determine the high deuterium-to-hydrogen ratios seen in some IDPs common in Wild&nbsp;2 solids
*Characterize the nature of the carbonaceous material in Wild&nbsp;2, and the relationship to silicates and other mineral phases or constraints in the processes by which they were formed (ion-molecule, gas-grain, irradiation of ices, etc.)
*Determine if there are organic refractory mantles on silicate grains and if they resemble the organics found in IDPs and meteorites
*Provide evidence of preaccretional processing of grains (cosmic ray tracks, sputtered rims, altered mineralogy, etc.)
*Determine if GEMS (Glass with Embedded Fe&nbsp;Ni Metal and Sulfides) are present
|}
*<small>'''Principal investigator:''' Donald Brownlee / University of Washington <!--()--></small>
*<small>'''Data:''' , </small>
|-
| colspan="2" style="background: #f2f2f2" | Dynamic Science Experiment ('''DSE''')
|-
| <!--]-->
| The experiment will primarily utilize the ] telecommunications system to conduct radio science on Wild&nbsp;2, to determine the mass of the comet; secondarily the inertial measurement unit is utilized to estimate the impact of large particle collisions on the spacecraft.<ref name=DSE/><ref name=NSSDCDSE/>
<!--Objectives collapsible-->
{| class="wikitable collapsible collapsed"
|-
! Objectives<ref name=DSE/>
|-
|
*Determine the mass and bulk density of Comet Wild&nbsp;2.
*Determine the coma density and constrain the particle size distribution for Comet Wild&nbsp;2.
*Sound the solar corona at X&nbsp;band, including electron content of the inner corona, solar wind acceleration, turbulence, and a search for coronal mass ejections.
|}
*<small>'''Lead investigator:''' John Anderson / JPL <!--()--></small>
*<small>'''Data:''' </small>
|}


====Sample collection====
==External link==
Comet and interstellar particles are collected in ultra low density ]. The ]-sized collector tray contained ninety blocks of aerogel, providing more than 1,000&nbsp;square centimeters of surface area to capture ] and ] dust grains.
*

To collect the particles without damaging them, a ]-based solid with a porous, ]-like structure is used in which 99.8&nbsp;percent of the volume is empty space. Aerogel has {{frac|1|1000}}&nbsp;the density of ], another silicon-based solid to which it may be compared. When a particle hits the aerogel, it becomes buried in the material, creating a long track, up to 200&nbsp;times the length of the grain. The aerogel was packed in an aluminium grid and fitted into a Sample Return Capsule (SRC), which was to be released from the spacecraft as it passed Earth in 2006.

To analyze the aerogel for interstellar dust, one million photographs will be needed to image the entirety of the sampled grains. The images will be ] to home computer users to aid in the study of the data using a program titled, ]. In April 2014, NASA reported they had recovered seven particles of interstellar dust from the aerogel.<ref name=phys.org1/>

{{Gallery |align=center |width=180 |height=200 |title=Images of the spacecraft
|File:Stardust - spacecraft diagram.png |alt1=Diagram of the spacecraft |Diagram of the spacecraft|File:Stardust - Coletor 2.png |alt2=Stardust capsule with aerogel collector deployed|''Stardust'' capsule with aerogel collector deployed|File:Stardust pre-launch.jpg |alt3=Stardust awaiting testing of the solar arrays |''Stardust'' awaiting testing of the solar arrays|File:Stardust - ksc9901117.jpg |alt4=The solar arrays being checked in the Payload Hazardous Servicing Facility |The solar arrays being checked in the Payload Hazardous Servicing Facility|File:Stardusft - ksc9812214.jpg |alt5=Stardust being checked before encapsulation |''Stardust'' being checked before encapsulation}}

===''Stardust'' microchip===
''Stardust'' was launched carrying two sets of identical pairs of square {{convert|10.16|cm|adj=on|sp=us|0}} silicon ]. Each pair featured engravings of well over one million names of people who participated in the public outreach program by filling out internet forms available in late 1997 and mid-1998. One pair of the microchips was positioned on the spacecraft and the other was attached to the sample return capsule.<ref name="LaunchPressKit"/>{{rp|24}}

==Mission profile==
===Launch and trajectory===
]}}{{·}}{{legend2|Royalblue|]}}{{·}}{{legend2|Cyan|]}}{{·}}{{legend2|Gold|]}}]]
''Stardust'' was launched at 21:04:15&nbsp;UTC on 7 February 1999, by the ] from ] at the ] in Florida, aboard a ] launch vehicle. The complete burn sequence lasted for 27&nbsp;minutes bringing the spacecraft into a heliocentric orbit that would bring the spacecraft around the ] and past ] for a ] in 2001, to reach asteroid ] in 2002 and ] in 2004 at a low flyby velocity of 6.1&nbsp;km/s. In 2004, the spacecraft performed a course correction that would allow it to pass by Earth a second time in 2006, to release the Sample Return Capsule for a landing in Utah in the ].<ref name=LaunchPressKit/>{{rp|14–22}}<ref name=info-stardust/>

During the second encounter with Earth, the Sample Return Capsule was released on Jan 15, 2006.<ref name=info-stardust/> Immediately afterwards, ''Stardust'' was put into a "divert maneuver" to avoid entering the atmosphere alongside the capsule. Under twenty kilograms of propellant remained onboard after the maneuver.<ref name=info-stardust/> On 29 January 2006, the spacecraft was put in hibernation mode with only the solar panels and receiver active, in a 3-year ] orbit that would return it to Earth vicinity on 14 January 2009.<ref name=info-stardust/><ref name=stardust_hib/>

A subsequent mission extension was approved on 3 July 2007, to bring the spacecraft back to full operation for a flyby of ] in 2011. The mission extension was the first to revisit a ] and used the remaining propellant, signaling the end of the useful life for the spacecraft.<ref name=NeXT/>{{Clear}}

{| style="float:right; margin-left:1em;"
! colspan="2" | Timeline of travel<ref name=info-stardust/><ref name=Tempel1Timeline/>
|-
|
{| class="wikitable"
|-
! scope="col" style="width:100px;"| Date
! scope="col" style="width:350px;"| Event
|-
| {{center|1999-02-07}}
| Spacecraft launched at 21:04:15.238&nbsp;UTC<ref name="nssdc-003a"/>
|-
| {{center|2000-05-01}}
| Stardust Sample Collection test.
|-
| {{center|2000-11-15}}
| Earth gravity assist maneuver
{| class="wikitable collapsible collapsed"
|-
! scope="col" style="width:100px;"| Time
! scope="col" style="width:230px;"| Event
|-
| {{center|'''2001-01-15'''}}
|
|-
| {{center|11:14:28}}
| Closest approach to Earth at {{convert|6008|km|abbr=on}}, flying by a point just southeast of the southern tip of Africa.<ref name=info-stardust/><ref name=nasa.010111/>
|-
| {{center|'''2001-02-15'''}}
| '''Phase Stop'''
|}
|-
| {{center|2002-04-18}}
| New record in spaceflight set: furthest solar powered object at 2.72&nbsp;].<ref name=Gasner2003/>
|-
| {{center|2002-11-02}}
| Flyby encounter with ]
{| class="wikitable collapsible collapsed"
|-
! scope="col" style="width:100px;"| Time
! scope="col" style="width:230px;"| Event
|-
| {{center|'''2002-11-02'''}}
|
|-
| {{center|4:50:20}}
| Closest approach to Annefrank at {{convert|3079|km|abbr=on}}.<ref name="info-stardust"/>
|-
| {{center|'''2002-11-05'''}}
| '''Phase Stop'''
|}
|-
| {{center|2004-01-02}}
| Flyby encounter with ]
{| class="wikitable collapsible collapsed"
|-
! scope="col" style="width:100px;"| Time
! scope="col" style="width:230px;"| Event
|-
| {{center|'''2003-12-24'''}}
|
|-
|
| ''Stardust'' Sample Collector deployed
|-
| {{center|'''2004-01-02'''}}
|
|-
| {{center|13:49:00}}
| "Encounter sequence" of onboard computer commands begins
|-
| {{center|14:19:00}}
| Cometary and interstellar dust analyzer instrument configured.
|-
| {{center|17:19:00}}
| Navigation camera takes approach image.
|-
| {{center|18:19:00}}
| Navigation camera takes approach image.
|-
| {{center|19:04:00}}
| Dust flux monitor instrument turned on.
|-
| {{center|19:12:00}}
| Stops sending data, transmits carrier signal only.
|-
| {{center|19:13:00}}
| Final roll maneuver to adjust encounter orientation.
|-
| {{center|19:21:28}}
| Closest approach to Wild&nbsp;2 at {{convert|237|km|abbr=on}}.<ref name="info-stardust"/>
|-
| {{center|19:25:00}}
| Navigation camera ends period of highest frequency imaging
|-
| {{center|19:25:00}}
| Roll maneuver to take spacecraft out of encounter orientation
|-
| {{center|19:26:00}}
| Resumes sending data instead of carrier signal
|-
| {{center|19:27:00}}
| Navigation camera takes final picture
|-
| {{center|19:29:00}}
| Navigation camera turned off
|-
| {{center|19:36:00}}
| Begins transmitting images, dust flux monitor data
|-
| {{center|'''2004-01-03'''}}
|
|-
| {{center|13:19:00}}
| Cometary and interstellar dust analyzer returned to cruise mode
|-
| {{center|13:19:00}}
| "Encounter sequence" of computer commands ends
|-
| {{center|'''2004-02-21'''}}
| '''Phase Stop'''
|}
|-
| {{center|2006-01-15}}
| Earth return of sample capsule.
{| class="wikitable collapsible collapsed"
|-
! scope="col" style="width:100px;"| Time
! scope="col" style="width:230px;"| Event
|-
| {{center|'''2006-01-15'''}}
|
|-
| {{center|09:57:00}}
| Sample Return Capsule reentry.<ref name=info-stardust/>
|-
| {{center|10:12:00}}
| Sample Return Capsule touchdown.<ref name=newsci20060115/>
|-
| {{center|'''2006-01-16'''}}
| '''Phase Stop'''
|}
|-
| {{center|2011-02-15}}
| Flyby encounter with ].
{| class="wikitable collapsible collapsed"
|-
! scope="col" style="width:100px;"| Time
! scope="col" style="width:230px;"| Event
|-
| {{center|'''2011-02-15'''}}
|
|-
| Encounter -20 minutes
| DFMI recording started.<ref name=info-next/>
|-
| Encounter -4 minutes
| NavCam observations started.<ref name=info-next/>
|-
| {{center|04:39:10}}
| Closest approach to Tempel 1 at a distance of {{convert|181|km|abbr=on}}.<ref name=info-next/><ref name=nasa20110214/>
|-
| Encounter +4 minutes
| NavCam observations ended. 72 images captured.<ref name="info-next"/>
|-
| Encounter +20 minutes
| DFMI recording ended.<ref name=info-next/>
|-
| Encounter +1 hour
| High-gain antenna turned to Earth.<ref name=nasa20110214/>
|-
| {{center|'''2006-02-16'''}}
| '''Phase Stop'''
|}
|-
| {{center|2011-03-24}}
| End of mission.
{| class="wikitable collapsible collapsed"
|-
! scope="col" style="width:100px;"| Time
! scope="col" style="width:230px;"| Event
|-
| {{center|'''2011-03-24'''}}
|
|-
| {{center|23:00:00}}
| Start of burn to consume remaining fuel.<ref name=nasa20110323/>
|-
| {{center|23:33:00}}
| Transmitter switched off.<ref name=nasa20110325/>
|-
| {{center|'''2011-03-24'''}}
| '''Phase Stop'''
|}
|}
|}

{{Gallery |align=center |width=180 |height=200 |File:Stardust - launch vehicle assembly diagram.png |alt1=Exploded diagram of the Delta&nbsp;II vehicle with Stardust |Exploded diagram of the Delta&nbsp;II vehicle with ''Stardust''.
|File:Stardust - launch photo - ksc9902074.jpg |alt2=Photo of Stardust during launch with a Delta II launch vehicle |''Stardust'' during launch with a Delta&nbsp;II launch vehicle.
|File:Stardust - mission trajectory.png |alt3=Trajectory of the ''Stardust'' spacecraft |Trajectory of the ''Stardust'' spacecraft en route to Wild&nbsp;2.
}}

===Encounter with Annefrank===
{{main|5535 Annefrank}}
At 04:50:20&nbsp;UTC on 2 November 2002, ''Stardust'' encountered asteroid 5535&nbsp;Annefrank from a distance of {{convert|3079|km|abbr=on}}.<ref name=info-stardust/> The solar phase angle ranged from 130&nbsp;degrees to 47&nbsp;degrees during the period of observations. This encounter was used primarily as an engineering test of the spacecraft and ground operations in preparation for the encounter with Comet Wild&nbsp;2 in 2003.<ref name=info-stardust/>

{{Gallery |align=center |width=180 |height=200 |File:Asteroid 5535 Annefrank.jpg |alt1=Image of asteroid Annefrank captured on 2 November 2002 |Image of asteroid Annefrank captured on 2 November 2002|File:Stardust - Annefrank falsa cor.png |alt2=A false-color image of asteroid Annefrank showing the irregular shape of the small solar system body |False-color image of asteroid Annefrank
|title=}}

===Encounter with Wild 2===
At 19:21:28&nbsp;UTC, on 2 January 2004, ''Stardust'' encountered ]&nbsp;2<ref name=cnn.20060113/> on the sunward side with a relative velocity of 6.1&nbsp;km/s at a distance of {{convert|237|km|abbr=on}}.<ref name=info-stardust/> The original encounter distance was planned to be {{convert|150|km|abbr=on}}, but this was changed after a safety review board increased the closest approach distance to minimize the potential for catastrophic dust collisions.<ref name=info-stardust/>

The relative velocity between the comet and the spacecraft was such that the comet actually overtook the spacecraft from behind as they traveled around the Sun. During the encounter, the spacecraft was on the Sunlit side of the nucleus, approaching at a solar phase angle of 70&nbsp;degrees, reaching a minimum angle of 3&nbsp;degrees near closest approach and departing at a phase angle of 110&nbsp;degrees.<ref name=info-stardust/> The ] software was used during the flyby.<ref name=autonav/>{{rp|11}}

During the flyby the spacecraft deployed the Sample Collection plate to collect ] from the ], and took detailed pictures of the icy ].<ref name=esp.stardust/>

{{Gallery |align=center |width=180 |height=200 |File:Wild2 3.jpg |alt1=Comet Wild&nbsp;2 as seen from ''Stardust'' on 2 January 2004 |Comet Wild&nbsp;2 as seen from ''Stardust'' on 2 January 2004|File:Comet_Wild2.jpg |alt2=Image of Wild&nbsp;2 taken during the closest approach phase |Image of Wild&nbsp;2 taken during the closest approach phase|File:Comet wild 2 jet plumes.jpg |alt3=An overexposed image of Wild&nbsp;2 showing plumes of material coming from the surface |An overexposed image of Wild&nbsp;2 showing plumes of material|File:Comet Wild2 Anaglyph.jpg |alt4=A three-dimensional anaglyph of comet Wild&nbsp;2 |A 3D anaglyph of comet Wild&nbsp;2|title=}}

==New Exploration of Tempel 1 (NExT)==
]

On 19 March 2006, ''Stardust'' scientists announced that they were considering the possibility of redirecting the spacecraft on a secondary mission to image ]. The comet was previously the target of the ] mission in 2005, sending an impactor into the surface. The possibility of this extension could be vital for gathering images of the impact crater which ''Deep Impact'' was unsuccessful in capturing due to dust from the impact obscuring the surface.

On 3 July 2007 the mission extension was approved and renamed ''New Exploration of Tempel&nbsp;1'' (NExT). This investigation would provide the first look at the changes to a comet nucleus produced after a close approach to the Sun. NExT also would extend the mapping of Tempel&nbsp;1, making it the most mapped comet nucleus to date. This mapping would help address the major questions of comet nucleus geology. The flyby mission was expected to consume almost all of the remaining fuel, signaling the end of the operability of the spacecraft.<ref name="NeXT"/> The ] software (for autonomous navigation) would control the spacecraft for the 30 minutes prior to encounter.<ref name="NExTPressKit"/>

The mission objectives included the following:<ref name=NExTPressKit/>

;Primary objectives
*Extend the current understanding of the processes that affect the surfaces of comet nuclei by documenting the changes that have occurred on Comet Tempel&nbsp;1 between two successive perihelion passages, or orbits around the Sun.
*Extend the geologic mapping of the nucleus of Tempel&nbsp;1 to elucidate the extent and nature of layering, and help refine models of the formation and structure of comet nuclei.
*Extend the study of smooth flow deposits, active areas and known exposure of water ice.

;Secondary objectives
*Potentially image and characterize the crater produced by Deep Impact in July 2005, to better understand the structure and mechanical properties of cometary nuclei and elucidate crater formation processes on them.
*Measure the density and mass distribution of dust particles within the coma using the Dust Flux Monitor Instrument.
*Analyze the composition of dust particles within the coma using the Comet and Interstellar Dust Analyzer instrument.

===Encounter with Tempel 1===
{{main|9P/Tempel}}
At 04:39:10&nbsp;UTC on 15 February 2011, ''Stardust-NExT'' encountered Tempel&nbsp;1 from a distance of {{convert|181|km|abbr=on}}.<ref name="info-next"/><ref name="nasa20110214"/> An estimated 72&nbsp;images were acquired during the encounter. These showed changes in the terrain and revealed portions of the comet never seen by ''Deep Impact''.<ref name=nasa_gallery /> The impact site from ''Deep Impact'' was also observed, though it was barely visible due to material settling back into the crater.<ref name=cnn_20110215/>

{{Gallery |align=center |width=180 |height=200 |File:StardustTemple1.jpg |alt1=Tempel&nbsp;1 from the Stardust-NExT spacecraft during closest approach. |Tempel&nbsp;1 from the ''Stardust-NExT'' spacecraft during closest approach|File:DeepImpactTempelCrater.jpg |alt2='Before and after' comparison images from ''Deep&nbsp;Impact'' and ''Stardust'', showing the crater formed by ''Deep&nbsp;Impact'' on the right hand image. |'Before and after' comparison images of Tempel&nbsp;1 by ''Deep&nbsp;Impact'' (''left'') and ''Stardust'' (''right'')|title=}}

===End of extended mission===
On 24 March 2011 at approximately 23:00&nbsp;UTC, ''Stardust'' conducted a burn to consume its remaining fuel.<ref name="nasa20110323"/> The spacecraft had little fuel left and scientists hoped the data collected would help in the development of a more accurate system for estimating fuel levels on spacecraft. After the data had been collected, no further antenna aiming was possible and the transmitter was switched off. The spacecraft sent an acknowledgement from approximately {{convert|312|e6km|e6mi|abbr=unit}} away in space.<ref name="nasa20110325"/>

==Sample return==
]

On 15 January 2006, at 05:57&nbsp;UTC, the Sample Return Capsule successfully separated from ''Stardust''. The SRC re-entered the Earth's atmosphere at 09:57&nbsp;UTC,<ref name=Farnham2010/> with a velocity of {{convert|46440|km/h|km/s|1|disp=out|abbr=on}}, the fastest reentry speed into Earth's atmosphere ever achieved by a human-made object.<ref name=stardust-return/> The capsule followed a drastic reentry profile, going from a velocity of Mach&nbsp;36 to subsonic speed within 110 seconds.<ref name=youtube1/>{{Failed verification|reason=None of this information is explicitly stated in either sources, and there is no verification for the claim that the simulation and the recording agree with each other.|date=January 2021}} Peak ] was 34&nbsp;'']'',<ref name=ReVelle2007/> encountered 40&nbsp;seconds into the reentry at an altitude of 55&nbsp;km over ].<ref name=youtube1/> The ] (PICA) ], produced by Fiber Materials Inc., reached a temperature of more than 2,900&nbsp;°C during this steep reentry.<ref name=SLIT/> The capsule then parachuted to the ground, finally landing at 10:12&nbsp;UTC at the ], near the U.S.&nbsp;Army ].<ref name=newsci20060115/><ref name=coordinates/> The capsule was then transported by military aircraft from Utah to ] in ], ], then transferred by road in an unannounced convoy to the Planetary Materials Curatorial facility at ] in Houston to begin analysis.<ref name=info-stardust/><ref name=msnbc20060118/>

===Sample processing===
]
The sample container was taken to a ] with a cleanliness factor 100&nbsp;times that of a hospital operating room to ensure the interstellar and comet dust was not contaminated.<ref name=hc01/> Preliminary estimations suggested at least a million&nbsp;] specks of dust were embedded in the ] collector. Ten&nbsp;particles were found to be at least 100&nbsp;]s (0.1&nbsp;mm) and the largest approximately 1,000&nbsp;micrometers (1&nbsp;mm). An estimated 45&nbsp;] impacts were also found on the sample collector, which resided on the back side of the cometary dust collector. Dust grains are being observed and analyzed by a volunteer team through the ] project, ].

The combined mass of the harvested sample was approximately 1&nbsp;mg.<ref name=nasa_ssc/>

In December 2006, seven papers were published in the scientific journal '']'', discussing initial details of the sample analysis. Among the findings are: a wide range of ], including two that contain biologically usable ]; indigenous ] with longer chain lengths than those observed in the diffuse ]; abundant amorphous ]s in addition to crystalline silicates such as ] and ], proving consistency with the mixing of ] and interstellar matter, previously deduced ]ally from ground observations;<ref name=notts.479V/> hydrous silicates and carbonate minerals were found to be absent, suggesting a lack of aqueous processing of the cometary dust; limited pure carbon (]){{clarify|Why is this linking to ] and not, say, ]? See ].|date=September 2017}} was also found in the samples returned; ] and ] was found in the aerogel but was not associated with specific particles.

In 2010, Dr. Andrew Westphal announced that ] volunteer Bruce Hudson found a track (labeled "I1043,1,30") among the many images of the aerogel that may contain an interstellar dust grain.<ref name=bbc2/> The program allows for any volunteer discoveries to be recognized and named by the volunteer. Hudson named his discovery "Orion".<ref name=lpsc2010.2050/>

]

In April 2011, scientists from the ] discovered evidence for the presence of liquid water in Comet ]. They have found iron and ] minerals that must have formed in the presence of water. The discovery shatters the existing paradigm that comets never get warm enough to melt their icy bulk.<ref name=es.20110407/> In the spring of 2014, the recovery of particles of interstellar dust from the Discovery program's Stardust mission was announced.<ref name=nasa_sidp/>

The Stardust samples are currently available for everyone to identify after completing the training at Berkeley webpage.<ref name=berkeley1/>

===Spacecraft location===
The return capsule is currently located at the ] in ] It began exhibition there on 1 October 2008, the 50th anniversary of the establishment of NASA. The return capsule is displayed in sample collection mode, alongside a sample of the aerogel used to collect samples.<ref name=NASM/>

==Results==
The comet samples show that the outer regions of the early ] were not isolated and were not a refuge where interstellar materials could commonly survive.<ref name=earth.124203/> The data suggest that high-temperature inner Solar System material formed and was subsequently transferred to the ].<ref name=science.1184741/>

;Glycine
In 2009 it was announced by ] that scientists had identified one of the fundamental chemical building blocks of life in a comet for the first time: ], an amino acid, was detected in the material ejected from Comet Wild&nbsp;2 in 2004 and captured by the ''Stardust'' probe. Glycine has been detected in meteorites before and there are also observations in interstellar gas clouds, but the ''Stardust'' find is described as a first in cometary material. Isotope analysis indicates that the ] included cometary impacts after the Earth coalesced but before life evolved.<ref name=Morbidelli2010/> Carl Pilcher, who leads NASA's Astrobiology Institute commented that "The discovery of glycine in a comet supports the idea that the fundamental building blocks of life are prevalent in space, and strengthens the argument that life in the universe may be common rather than rare."<ref name=bbc1/>

==See also==
{{Portal|Spaceflight}}
*]
*], sample return from the ]
*'']'', sample return from an asteroid
*]
*]
*]
*]
*]
*]
*]

==References==
{{Reflist|refs=

<ref name="AP-20140814">{{cite news
| author1= Marcia Dunn
| title= Specks returned from space may be alien visitors
| url= http://apnews.excite.com/article/20140814/us-sci--alien_stardust-9d21e5267a.html
| date=14 August 2014
| work= ]
| access-date= 14 August 2014 }}
</ref>

<ref name="autonav">{{Cite book
| chapter-url= https://pdfs.semanticscholar.org/6b94/ab810bd8e2b0e0918478c1dcd5a7e1961731.pdf
| chapter= Autonomous Navigation for Deep Space Missions
| year= 2012
| doi= 10.2514/6.2012-1267135
| s2cid= 53695269
| archive-url= https://web.archive.org/web/20190813132518/https://pdfs.semanticscholar.org/6b94/ab810bd8e2b0e0918478c1dcd5a7e1961731.pdf
| archive-date= 13 August 2019
| author1= Shyam Bhaskaran | title= SpaceOps 2012 Conference
}}
</ref>

<ref name="bbc1">{{cite news
| url= http://news.bbc.co.uk/2/hi/science/nature/8208307.stm
| title= 'Life chemical' detected in comet
| work= ]
| date= 18 August 2009 }}
</ref>

<ref name="bbc2">{{cite news
| title= Probe may have found cosmic dust
| work= ]
| date= 5 March 2010
| url= http://news.bbc.co.uk/2/hi/8550924.stm
| author= Paul Rincon }}
</ref>

<ref name="berkeley1">{{Cite web
| url= http://foils.ssl.berkeley.edu/ss_findingsd.php
| title= Stardust@Home - Stardust Search Finding Stardust
| website= foils.ssl.berkeley.edu
| access-date= 27 August 2021
| archive-date= 24 October 2021
| archive-url= https://web.archive.org/web/20211024132243/http://foils.ssl.berkeley.edu/ss_findingsd.php
| url-status= dead }}
</ref>

<ref name="Camera">{{cite journal
| title= Stardust Imaging Camera
| journal= Journal of Geophysical Research
| date=14 October 2003
| author1= R. L. Newburn, Jr.
| author2= S. Bhaskaran
| author3= T. C. Duxbury
| author4= G. Fraschetti
| author5= T. Radey
| author6= M. Schwochert
| volume= 108
| issue= 8116
| pages= 8116
| doi= 10.1029/2003JE002081
| bibcode= 2003JGRE..108.8116N
| doi-access= free }}
</ref>

<ref name="CIDA">{{cite journal
| title= Cometary and Interstellar Dust Analyzer for comet Wild&nbsp;2
| journal= Journal of Geophysical Research
| date= 2003
| author1= J. Kissel
| author2= A. Glasmachers
| author3= E. Grün
| author4= H. Henkel
| author5= H. Höfner
| author6= G. Haerendel
| author7= H. von Hoerner
| author8= K. Hornung
| author9= E. K. Jessberger
| author10= F. R. Krueger
| author11= D. Möhlmann
| author12= J. M. Greenberg
| author13= Y. Langevin
| author14= J. Silén
| author15= D. Brownlee
| author16= B. C. Clark
| author17= M. S. Hanner
| author18= F. Hoerz
| author19= S. Sandford
| author20= Z. Sekanina
| author21= P. Tsou
| author22= N. G. Utterback
| author23= M. E. Zolensky
| author24= C. Heiss
| display-authors= 9
| volume= 108
| issue= E10
| pages= 8114
| doi= 10.1029/2003JE002091
| bibcode= 2003JGRE..108.8114K
| url= https://zenodo.org/record/894530
| doi-access= free }}
</ref>

<ref name="cnn.20060113">{{cite news
| title= Spacecraft bringing comet dust back to Earth
| url= http://www.cnn.com/2006/TECH/space/01/13/stardust/
| author1= David E. Williams
| work= ]
| date= 13 January 2006
| url-status= live
| archive-date= 27 January 2006
| archive-url= https://web.archive.org/web/20060127200153/http://www.cnn.com/2006/TECH/space/01/13/stardust/ }}
</ref>

<ref name="cnn_20110215">{{cite news
| author1= Kimberly Segal
| author2= John Zarrella
| url= http://www.cnn.com/2011/US/02/15/space.comet/
| work= ]
| title= Crater on comet 'partly healed itself'
| date= 16 February 2011
| url-status= live
| archive-date= 25 March 2014
| archive-url= https://web.archive.org/web/20140325214339/http://www.cnn.com/2011/US/02/15/space.comet/ }}
</ref>

<ref name="coordinates">{{cite web
| title= NASA's Comet Tale Draws to a Successful Close in Utah Desert
| url= http://stardust.jpl.nasa.gov/news/status/060115.html
| work= ]
| access-date= 4 March 2008 }}
</ref>

<ref name="DFMI">{{cite journal
| title= Dust Flux Monitor Instrument for the ''Stardust'' mission to comet Wild&nbsp;2
| journal= Journal of Geophysical Research
| date= 2003
| author= A. J. Tuzzolino
| volume= 108
| issue= E10
| pages= 8115
| doi= 10.1029/2003JE002086
| bibcode= 2003JGRE..108.8115T
| doi-access= }}
</ref>

<ref name="DSE">{{cite journal
| title= Dynamic science on the Stardust mission
| journal= Journal of Geophysical Research
| author1= John D. Anderson
| author2= Eunice L. Lau
| author3= Michael K. Bird
| author4= Benton C. Clark
| author5= Giacomo Giampieri
| author6= Martin Patzold
| volume= 108
| issue= E10
| pages= 8117
| doi= 10.1029/2003JE002092
| bibcode= 2003JGRE..108.8117A
| year= 2003
| s2cid= 14492615
| doi-access= free }}
</ref>

<ref name="earth.124203">{{cite journal
| author1= Don Brownlee
| title= The Stardust Mission: Analyzing Samples from the Edge of the Solar System
| journal= Annual Review of Earth and Planetary Sciences
| date= 5 February 2014
| doi= 10.1146/annurev-earth-050212-124203
| volume= 42
| issue= 1
| pages= 179–205
| bibcode= 2014AREPS..42..179B }}
</ref>

<ref name="es.20110407">{{cite web
| author1= Cecile LeBlanc
| title= Evidence for liquid water on the surface of Comet Wild&nbsp;2
| url= http://earthsky.org/space/evidence-for-liquid-water-on-the-surface-of-comet-wild-2
| date= 7 April 2011
| website= earthsky.org }}
</ref>

<ref name="esp.stardust">{{cite web
| title= Stardust
| url= http://www.extrasolar-planets.com/astronautics/stardust.html
| website= www.extrasolar-planets.com
| publisher= Extrasolar-Planets
| archive-url= https://web.archive.org/web/20090828050328/http://www.extrasolar-planets.com/astronautics/stardust.html
| archive-date= 28 August 2009
| url-status= dead }}
</ref>

<ref name="Farnham2010">{{cite journal
| url= https://pds.nasa.gov/ds-view/pds/viewProfile.jsp?dsid=SDU-C-SRC-2-TEMPS-V1.0
| title= Stardust SRC Temperature Data V1.0
| publisher= ]
| journal= ]
| author1= T. L. Farnham
| author2= B. Semenov
| date= January 2010
| volume= 8187
| bibcode= 2010PDSS.8187E....F }}
</ref>

<ref name="Gasner2003">{{cite conference
| url= https://www.researchgate.net/publication/224749036
| title= The Stardust solar array
| conference= 3rd World Conference on Photovoltaic Energy Conversion. 11–18 May 2003. Osaka, Japan.
| author1= Steve Gasner
| author2= Khaled Sharmit
| author3= Paul Stella
| author4= Calvin Craig
| author5= Susan Mumaw
| date= 2003 }}
</ref>

<ref name="hc01">{{cite web
| author1= Mark Carreau
| title= Stardust's Cargo Comes to Houston under Veil of Secrecy
| url= http://www.chron.com/disp/story.mpl/front/3593677.html
| website= www.chron.com
| access-date= 4 March 2008
| date= 17 January 2006 }}
</ref>

<ref name="info-next">{{cite web
| url= https://pds.nasa.gov/ds-view/pds/viewMissionProfile.jsp?MISSION_NAME=NEXT
| title= Mission Information: NExT
| work= ]
| access-date= 20 January 2018 }}
</ref>

<ref name="info-stardust">{{cite web
| url= https://pds.nasa.gov/ds-view/pds/viewMissionProfile.jsp?MISSION_NAME=STARDUST
| title= Mission Information: Stardust
| work= ]
| access-date= 20 January 2018 }}
</ref>

<ref name="LaunchPressKit">{{cite web
| url= https://www.jpl.nasa.gov/news/press_kits/stardust.pdf
| title= Stardust Launch
| website= jpl.nasa.gov
| publisher= ]
| type= Press Kit
| date= February 1999
| archive-url= https://web.archive.org/web/20011116222435/http://www.jpl.nasa.gov/news/press_kits/stardust.pdf
| archive-date= 16 November 2001
| url-status= live }}
</ref>

<ref name="lpsc2010.2050">{{cite conference
| title= Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain
| publisher= 41st Lunar and Planetary Science Conference
| url= http://www.lpi.usra.edu/meetings/lpsc2010/pdf/2050.pdf
| author1= A. J. Westphal
| author2= C. Allen
| author3= S. Bajt
| author4= R. Bastien
| author5= H. Bechtel
| author6= P. Bleuet
| author7= J. Borg
| author8= F. Brenker
| author9= J. Bridges
| author10= D. E. Brownlee
| author11= M. Burchell
| author12= M. Burghammer
| author13= A. L. Butterworth
| author14= P. Cloetens
| author15= G. Cody
| author16= T. Ferroir
| author17= C. Floss
| author18= G. J. Flynn
| author19= D. Frank
| author20= Z. Gainsforth
| author21= E. Grün
| author22= P. Hoppe
| author23= B. Hudson
| author24= A. Kearsley
| author25= B. Lai
| author26= L. Lemelle
| author27= H. Leroux
| author28= R. Lettieri
| author29= W. Marchant
| author30= A. Nanz
| author31= L. R. Nittler
| author32= R. Ogliore
| author33= F. Postberg
| author34= S. A. Sandford
| author35= S. Schmitz
| author36= G. Silversmit
| author37= A. Simionovici
| author38= R. Srama
| author39= F. Stadermann
| author40= T. Stephan
| author41= R. M. Stroud
| author42= J. Susini
| author43= S. Sutton
| author44= R. Toucoulou
| author45= M. Trieloff
| author46= P. Tsou
| author47= A. Tsuchiyama
| author48= T. Tyliczszak
| author49= B. Vekemans
| author50= L. Vincze
| author51= J. Warren
| author52= S. Wagner
| author53= D. Zevin
| author54= M. E. Zolensky
| author55= Stardust@Home Dusters
| display-authors= 9 }}
</ref>

<ref name="Morbidelli2010">{{cite journal
| title= Source regions and timescales for the delivery of water to the Earth | journal= Meteoritics & Planetary Science
| date= February 2010
| author1= A. Morbidelli
| author2= J. Chambers
| author3= Jonathan I. Lunine
| author4= J. M. Petit
| author5= F. Robert
| author6= G. B. Valsecchi
| author7= K. E. Cyr
| volume= 35
| issue= 6
| pages= 1309–1320
| doi= 10.1111/j.1945-5100.2000.tb01518.x
| bibcode= 2000M&PS...35.1309M
| doi-access= free }}
</ref>

<ref name="msnbc20060118">{{cite news
| author1= James Oberg
| title= Scientists overjoyed with comet samples
| url= http://www.nbcnews.com/id/10909782/ns/technology_and_science-space/t/scientists-overjoyed-comet-samples/
| archive-url= https://web.archive.org/web/20140807082301/http://www.nbcnews.com/id/10909782/ns/technology_and_science-space/t/scientists-overjoyed-comet-samples/
| url-status= dead
| archive-date= 7 August 2014
| work= ]
| date= 18 January 2006
| access-date= 1 June 2018 }}
</ref>

<ref name="nasa.010111">{{cite web
| url= http://stardust.jpl.nasa.gov/news/status/010111.html
| title= Stardust can see clearly now – just before Earth flyby
| website= stardust.jpl.nasa.gov
| publisher= ]
| author1= Donald Savage
| author2= Martha J. Heil
| date= 11 January 2001
| archive-url= https://web.archive.org/web/20010129033500/http://stardust.jpl.nasa.gov/news/status/010111.html
| archive-date= 29 January 2001
| url-status= live }}
</ref>

<ref name="nasa20110214">{{cite web
| url= https://www.nasa.gov/mission_pages/stardust/news/stardust20110214c.html
| title= NASA's Stardust Spacecraft Completes Comet Flyby |publisher=NASA
| editor= Tony Greicius
| date= 14 February 2011
| access-date= 20 January 2018
| archive-date= 4 June 2017
| archive-url= https://web.archive.org/web/20170604231915/https://www.nasa.gov/mission_pages/stardust/news/stardust20110214c.html
| url-status= dead }}
</ref>

<ref name="nasa20110323">{{cite web
| url= https://www.nasa.gov/mission_pages/stardust/news/stardust20110323.html
| title= NASA's Stardust: Good to the Last Drop
| website= nasa.gov
| publisher= ]
| date= 23 March 2011
| access-date= 20 January 2018
| archive-date= 27 April 2011
| archive-url= https://web.archive.org/web/20110427065411/https://www.nasa.gov/mission_pages/stardust/news/stardust20110323.html
| url-status= dead }}
</ref>

<ref name="nasa20110325">{{cite web
| url= http://www.nasa.gov/mission_pages/stardust/news/stardust20110325.html
| title= NASA Stardust Spacecraft Officially Ends Operations
| website= nasa.gov
| publisher= ]
| author1= D. C. Agle
| author2= Dwayne Brown
| date= 25 March 2011
| access-date= 16 January 2016
| archive-date= 10 April 2016
| archive-url= https://web.archive.org/web/20160410163908/http://www.nasa.gov/mission_pages/stardust/news/stardust20110325.html
| url-status= dead }}
</ref>

<ref name="NASA-20140814">{{cite web
| author1= D. C. Agle
| author2= Dwayne Brown
| author3= William Jeffs
| title= Stardust Discovers Potential Interstellar Space Particles
| url= http://www.jpl.nasa.gov/news/news.php?release=2014-278
| date= 14 August 2014
| work= ]
| access-date= 14 August 2014 }}
</ref>

<ref name="nasa_gallery">{{cite web
| url= http://www.nasa.gov/mission_pages/stardust/multimedia/gallery-index.html
| website= nasa.gov
| publisher= ]
| title= Stardust: Image Gallery
| url-status= live
| archive-date= 17 February 2011
| archive-url= https://web.archive.org/web/20110217153142/http://www.nasa.gov/mission_pages/stardust/multimedia/gallery-index.html }}
</ref>

<ref name="nasa_life">{{cite web
| title= Comets & The Question of Life
| url= http://stardust.jpl.nasa.gov/science/life.html
| work= ]
| archive-url= https://web.archive.org/web/20010429171432/http://stardust.jpl.nasa.gov/science/life.html
| archive-date= 29 April 2001
| url-status= dead }}
</ref>

<ref name="nasa_sidp">{{cite web
| url= http://curator.jsc.nasa.gov/stardust/Interstellardust.cfm
| title= Stardust Interstellar Dust Particles
| work= ]
| date= 13 March 2014
| url-status= live
| archive-date= 14 July 2007
| archive-url= https://web.archive.org/web/20070714055214/http://curator.jsc.nasa.gov/stardust/Interstellardust.cfm }}
</ref>

<ref name="nasa_ssc">{{Cite web
| title= Stardust Sample Collection
| url= https://curator.jsc.nasa.gov/stardust/samplecollection.cfm
| work= ] }}
</ref>

<ref name="NASM">{{Cite web
| url= https://airandspace.si.edu/multimedia-gallery/2008-13195hjpg
| title= Stardust Return Capsule
| website= airandspace.si.edu
| date= 27 October 2017
| publisher= ] }}
</ref>

<ref name="newsci20060115">{{cite news
| url= https://www.newscientist.com/article/dn8586-pinch-of-comet-dust-lands-safely-on-earth/
| title= Pinch of comet dust lands safely on Earth
| work= New Scientist
| author1= Hazel Muir
| date= 15 January 2006
| access-date= 20 January 2018 }}
</ref>

<ref name="NeXT">{{cite web
| url= http://www.nasa.gov/mission_pages/stardust/news/stardust20110210.html
| title= Stardust/NExT – Five Things About NASA's Valentine's Day Comet
| website= nasa.gov
| publisher= ]
| date= 10 February 2011
| access-date= 12 February 2011
| archive-date= 18 June 2017
| archive-url= https://web.archive.org/web/20170618051101/https://www.nasa.gov/mission_pages/stardust/news/stardust20110210.html
| url-status= dead }}
</ref>

<ref name="NExTPressKit">{{cite web
| url= https://www.jpl.nasa.gov/news/press_kits/Stardust-NExT-PressKit.pdf
| title= Stardust-NExT
| publisher= ]
| type= Press Kit
| date= February 2011
| archive-url= https://web.archive.org/web/20110627025413/http://www.jpl.nasa.gov/news/press_kits/Stardust-NExT-PressKit.pdf
| archive-date= 27 June 2011
| url-status= live }}
</ref>

<ref name="notts.479V">{{cite journal
| title= The building blocks of planets within the 'terrestrial' region of protoplanetary disks
| journal= ]
| volume= 432
| issue= 7016
| pages= 479–82
| bibcode= 2004Natur.432..479V
| author1= R. Van Boekel
| author2= M. Min
| author3= Ch. Leinert
| author4= L. B. F. M. Waters
| author5= A. Richichi
| author6= O. Chesneau
| author7= C. Dominik
| author8= W. Jaffe
| author9= A. Dutrey
| author10= U. Graser
| author11= Th. Henning
| author12= J. De Jong
| author13= R. Köhler
| author14= A. De Koter
| author15= B. Lopez
| author16= F. Malbet
| author17= S. Morel
| author18= F. Paresce
| author19= G. Perrin
| author20= Th. Preibisch
| author21= F. Przygodda
| author22= M. Schöller
| author23= M. Wittkowski
| display-authors= 9
| year= 2004
| doi= 10.1038/nature03088
| pmid= 15565147
| s2cid= 4362887 }}
</ref>

<ref name="nssdc-003a">{{cite web
| url= https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1999-003A
| title= Stardust/NExT
| website= nssdc.gsfc.nasa.gov
| publisher= ]
| access-date= 20 January 2018 }}
</ref>

<ref name="NSSDCCIDA">{{cite web
| url= https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1999-003A-02
| title= Stardust: Cometary and Interstellar Dust Analyzer (CIDA)
| website= nssdc.gsfc.nasa.gov
| publisher= ]
| access-date= 19 February 2011 }}
</ref>

<ref name="NSSDCDFMI">{{cite web
| url= https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1999-003A-03
| title= Stardust: Dust Flux Monitor Instrument (DFMI)
| website= nssdc.gsfc.nasa.gov
| publisher= ]
| access-date= 19 February 2011 }}
</ref>

<ref name="NSSDCDSE">{{cite web
| url= https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1999-003A-04
| title= Stardust: Dynamic Science
| website= nssdc.gsfc.nasa.gov
| publisher= ]
| access-date= 19 February 2011 }}
</ref>

<ref name="NSSDCNC">{{cite web
| url= https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1999-003A-01
| title= Stardust: Imaging and Navigation Camera
| website= nssdc.gsfc.nasa.gov
| publisher= ]
| access-date= 19 February 2011 }}
</ref>

<ref name="NSSDCSSC">{{cite web
| url= https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1999-003D-01
| title= Stardust Sample Collection
| website= nssdc.gsfc.nasa.gov
| publisher= ]
| access-date= 19 February 2011 }}
</ref>

<ref name="pds.inst.sdu">{{cite web
| url= https://pds.nasa.gov/ds-view/pds/viewHostProfile.jsp?INSTRUMENT_HOST_ID=SDU
| title= Instrument Host Information: Stardust
| publisher= ]
| work= ]
| access-date= 20 January 2018 }}
</ref>

<ref name="phys.org1">{{Cite web
| author1= Aaron L. Gronstal
| url= http://phys.org/news/2014-04-samples-solar-birth.html
| title= Seven samples from the solar system's birth
| website= phys.org
| date= 28 April 2014 }}
</ref>

<ref name="ReVelle2007">{{cite journal
| author1= D. O. ReVelle
| author2= W. N. Edwards
| date= 2007
| title= Stardust – An artificial, low-velocity "meteor" fall and recovery: 15&nbsp;January 2006
| doi= 10.1111/j.1945-5100.2007.tb00232.x
| volume= 42
| issue= 2
| journal= Meteoritics & Planetary Science
| pages= 271–299
| bibcode= 2007M&PS...42..271R
| doi-access= free }}
</ref>

<ref name="route">{{cite news
| title= NASA Spacecraft Returns With Comet Samples After 2.9&nbsp;Bln Miles
| author1= Chris Dolmetsch
| work= ]
| url= https://www.bloomberg.com/apps/news?pid=10000103&sid=argumCeZP_Zc
| date= 15 January 2006
| url-status= dead
| archive-date= 28 March 2014
| archive-url= https://web.archive.org/web/20140328121046/http://www.bloomberg.com/apps/news?pid=newsarchive&sid=argumCeZP_Zc }}
</ref>

<ref name="SCI-20140814">{{cite journal
| author1= Eric Hand
| title= Seven grains of interstellar dust reveal their secrets
| url= https://www.science.org/content/article/seven-grains-interstellar-dust-reveal-their-secrets
| date= 14 August 2014
| journal= ]
| access-date= 14 August 2014 }}
</ref>

><ref name="SCI-20140815">{{Cite journal
| doi=10.1126/science.1252496
| title= Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft
| journal= ]
| volume= 345
| issue= 6198
| pages= 786–791
| year= 2014
| author1= A. J. Westphal
| author2= R. M. Stroud
| author3= H. A. Bechtel
| author4= F. E. Brenker
| author5= A. L. Butterworth
| author6= G. J. Flynn
| author7= D. R. Frank
| author8= Z. Gainsforth
| author9= J. K. Hillier
| author10= F. Postberg
| author11= A. S. Simionovici
| author12= V. J. Sterken
| author13= L. R. Nittler
| author14= C. Allen
| author15= D. Anderson
| author16= A. Ansari
| author17= S. Bajt
| author18= R. K. Bastien
| author19= N. Bassim
| author20= J. Bridges
| author21= D. E. Brownlee
| author22= M. Burchell
| author23= M. Burghammer
| author24= H. Changela
| author25= P. Cloetens
| author26= A. M. Davis
| author27= R. Doll
| author28= C. Floss
| author29= E. Grun
| author30 = P. R. Heck
| display-authors= 9
| pmid= 25124433
| bibcode= 2014Sci...345..786W
| url= http://bib-pubdb1.desy.de/record/207250/files/Science-2014-Westphal-786-91.pdf
| hdl= 2381/32470
| s2cid= 206556225
| hdl-access= free }}
</ref>

<ref name="science.1184741">{{cite journal
| author1= Jennifer E. P. Matzel
| title= Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission
| journal= ]
| date= 23 April 2010
| volume= 328
| issue= 5977
| pages= 483–486
| doi= 10.1126/science.1184741
| pmid= 20185683
| bibcode= 2010Sci...328..483M
| osti= 980892
| s2cid= 206524630 }}
</ref>

<ref name="SLIT">{{cite web
| author1=Michael W. Winter
| author2= Kerry A. Trumble
| date= 2010
| url= https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100021412_2010023272.pdf
| title= Spectroscopic Observation of the Stardust Re-Entry in the Near&nbsp;UV with SLIT: Deduction of Surface Temperatures and Plasma Radiation
| work= ] }}
</ref>

<ref name="SSC">{{cite journal
| title= Wild&nbsp;2 and interstellar sample collection and Earth return
| journal= Journal of Geophysical Research
| date= 2003
| author1= P. Tsou
| author2= D. E. Brownlee
| author3= S. A. Sandford
| author4= F. Horz
| author5= M. E. Zolensky
| volume= 108
| issue= E10
| pages= 8113
| doi= 10.1029/2003JE002109
| bibcode= 2003JGRE..108.8113T
| doi-access= free }}
</ref>

<ref name="Stardust">{{cite web
| url= https://solarsystem.nasa.gov/missions/stardust/in-depth/
| title= Stardust
| website= solarsystem.nasa.gov
| publisher= ]
| access-date= 2 December 2022 }}
</ref>

<ref name="stardust_hib">{{cite web
| author1= Alicia Chang
| title= Stardust Put In Hibernation Mode
| url= http://www.space.com/missionlaunches/060131_ap_stardust_hibernate.html
| website= Space.com
| url-status= dead
| archive-date= 31 January 2006
| archive-url= https://web.archive.org/web/20060131194041/http://www.space.com/missionlaunches/060131_ap_stardust_hibernate.html }}
</ref>

<ref name="stardust-return">{{cite web
| url= https://www.jpl.nasa.gov/news/press_kits/stardust-return.pdf
| title= Stardust Sample Return
| type= Press Kit
| website= jpl.nasa.gov
| publisher= ]
| date= January 2006 }}
</ref>

<ref name="Stardust:Spacecraft">{{cite web
| url= http://stardust.jpl.nasa.gov/mission/spacecraft.html
| title= Stardust Flight System Description
| website= stardust.jpl.nasa.gov
| publisher= ]
| access-date= 14 February 2011 }}
</ref>

<ref name="Tempel1Timeline">{{cite press release
| website= nasa.gov
| publisher= ]
| date= 14 February 2011
| title= Stardust: Mission Timeline
| url= http://www.nasa.gov/mission_pages/stardust/timeline/
| access-date= 19 February 2011
| archive-date= 15 April 2015
| archive-url= https://web.archive.org/web/20150415081406/http://www.nasa.gov/mission_pages/stardust/timeline/
| url-status= dead }}
</ref>

<ref name="youtube1">{{YouTube
| id= KT6ci6PH0jk
| title= Stardust Reentry Simulation }}

''Data in the simulation agrees with readings by the airborne observation team monitoring the reentry, available at Archived at {{cbignore}} and the ''{{cbignore}}:

{{YouTube
| id=YmUY9091HAc
| title=Stardust Capsule Reentry }} {{cbignore}}
</ref>

}}

==External links==
{{Commons category}}
* at NASA.gov
* by NASA's Jet Propulsion Laboratory
* by NASA's Jet Propulsion Laboratory
* at the NASA Planetary Data System, Small Bodies Node
* at the NASA Planetary Data System, Small Bodies Node

{{Planetary Missions Program Office|Discovery=y}}
{{Asteroid spacecraft}}
{{Planetary defense}}
{{Jet Propulsion Laboratory}}
{{Solar System probes}}
{{Orbital launches in 1999}}

{{Use dmy dates|date=January 2018}}

]
]
]
]
]
]
]
]
]

Revision as of 14:56, 19 August 2024

NASA sample-return mission to Comet 81P/Wild 2 (1999–2011)
Stardust
A spacecraft is depicted following a comet from within its tail.Artist's impression of Stardust collecting dust particles from Comet Wild 2
NamesDiscovery 4
Stardust-NExT
Mission typeSample return
OperatorNASA / JPL
COSPAR ID1999-003A Edit this at Wikidata
SATCAT no.25618
Websitesolarsystem.nasa.gov
Mission durationStardust:
6 years, 11 months, 8 days
NExT:
4 years, 2 months, 7 days
Total:
12 years, 1 month, 17 days
Spacecraft properties
BusSpaceProbe
ManufacturerLockheed Martin
University of Washington
Launch mass385 kg (849 lb)
Dry mass305.397 kg (673.29 lb)
DimensionsBus: 1.71 × 0.66 × 0.66 m
(5.6 × 2.16 × 2.16 ft)
Power330 W (Solar array / NiH2 batteries)
Start of mission
Launch date7 February 1999, 21:04:15.238 (1999-02-07UTC21:04:15) UTC
RocketDelta II 7426-9.5
D-266
Launch siteCape Canaveral SLC-17
ContractorLockheed Martin Space Systems
End of mission
DisposalDecommissioned
DeactivatedSpacecraft: 24 March 2011, 23:33 (2011-03-24UTC23:34) UTC
Landing dateCapsule: 15 January 2006, 10:12 UTC
Landing siteUtah Test and Training Range
40°21.9′N 113°31.3′W / 40.3650°N 113.5217°W / 40.3650; -113.5217
Flyby of Earth
Closest approach15 January 2001, 11:14:28  UTC
Distance6,008 km (3,733 mi)
Flyby of asteroid 5535 Annefrank
Closest approach2 November 2002, 04:50:20 UTC
Distance3,079 km (1,913 mi)
Flyby of Wild 2
Closest approach2 January 2004, 19:21:28 UTC
Distance237 km (147 mi)
Flyby of Earth (Sample return)
Closest approach15 January 2006
Flyby of Earth
Closest approach14 January 2009, 12:33  UTC
Distance9,157 km (5,690 mi)
Flyby of 9P/Tempel
Closest approach15 February 2011, 04:39:10 UTC
Distance181 km (112 mi)
Instruments
CIDAComet and Interstellar Dust Analyzer
DFMIDust Flux Monitor Instrument
SSCStardust Sample Collection
DSEDynamic Science Experiment
NavCamNavigation Camera
Discovery program← Lunar ProspectorGenesis →

Stardust was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis. It was the first sample return mission of its kind. En route to Comet Wild 2, it also flew by and studied the asteroid 5535 Annefrank. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.

A mission extension, codenamed NExT, culminated in February 2011 with Stardust intercepting Comet Tempel 1, a small Solar System body previously visited by Deep Impact in 2005. Stardust ceased operations in March 2011.

On 14 August 2014, scientists announced the identification of possible interstellar dust particles from the Stardust capsule returned to Earth in 2006.

Mission background

History

Beginning in the 1980s, scientists began seeking a dedicated mission to study a comet. During the early 1990s, several missions to study Comet Halley became the first successful missions to return close-up data. However, the US cometary mission, Comet Rendezvous Asteroid Flyby, was canceled for budgetary reasons. In the mid-1990s, further support was given to a cheaper, Discovery-class mission that would study Comet Wild 2 in 2004.

Stardust was competitively selected in the fall of 1995 as a NASA Discovery Program mission of low-cost with highly focused science goals. Construction of Stardust began in 1996, and was subject to the maximum contamination restriction, level 5 planetary protection. However, the risk of interplanetary contamination by alien life was judged low, as particle impacts at over 450 metres per second (1,000 mph), even into aerogel, were believed to be terminal for any known microorganism.

Comet Wild 2 was selected as the primary target of the mission for the rare chance to observe a long-period comet that has ventured close to the Sun. The comet has since become a short period comet after an event in 1974, where the orbit of Wild 2 was affected by the gravitational pull of Jupiter, moving the orbit inward, closer to the Sun. In planning the mission, it was expected that most of the original material from which the comet formed would still be preserved.

The primary science objectives of the mission included:

  • Providing a flyby of a comet of interest (Wild 2) at a sufficiently low velocity (less than 6.5 km/s) such that non-destructive capture of comet dust is possible using an aerogel collector.
  • Facilitating the intercept of significant numbers of interstellar dust particles using the same collection medium, also at as low a velocity as possible.
  • Returning as many high-resolution images of the comet coma and nucleus as possible, subject to the cost constraints of the mission.

The spacecraft was designed, built and operated by Lockheed Martin Astronautics as a Discovery-class mission in Denver, Colorado. JPL provided mission management for the NASA division for mission operations. The principal investigator of the mission was Dr. Donald Brownlee from the University of Washington.

Spacecraft design

The spacecraft bus measured 1.7 meters (5 ft 7 in) in length, and 0.66 meters (2 ft 2 in) in width, a design adapted from the SpaceProbe deep space bus developed by Lockheed Martin Astronautics. The bus was primarily constructed with graphite fiber panels with an aluminum honeycomb support structure underneath; the entire spacecraft was covered with polycyanate, Kapton sheeting for further protection. To maintain low costs, the spacecraft incorporated many designs and technologies used in past missions or previously developed for future missions by the Small Spacecraft Technologies Initiative (SSTI). The spacecraft featured five scientific instruments to collect data, including the Stardust Sample Collection tray, which was brought back to Earth for analysis.

Attitude control and propulsion

The spacecraft was three-axis stabilized with eight 4.41 N hydrazine monopropellant thrusters, and eight 1 N thrusters to maintain attitude control (orientation); necessary minor propulsion maneuvers were performed by these thrusters as well. The spacecraft was launched with 80 kilograms of propellant. Information for spacecraft positioning was provided by a star camera using FSW to determine attitude (Stellar Compass), an inertial measurement unit, and two Sun sensors. The Stellar Compass software was provided by Intelligent Decisions, Inc.

Communications

For communicating with the Deep Space Network, the spacecraft transmitted data across the X-band using a 0.6-meter (2 ft 0 in) parabolic high-gain antenna, medium-gain antenna (MGA) and low-gain antennas (LGA) depending on mission phase, and a 15-watt transponder design originally intended for the Cassini spacecraft.

Power

The probe was powered by two solar arrays, providing an average of 330 watts of power. The arrays also included Whipple shields to protect the delicate surfaces from the potentially damaging cometary dust while the spacecraft was in the coma of Wild 2. The solar array design was derived primarily from the Small Spacecraft Technology Initiative (SSTI) spacecraft development guidelines. The arrays provided a unique method of switching strings from series to parallel depending on the distance from the Sun. A single nickel–hydrogen (NiH2) battery was also included to provide the spacecraft with power when the solar arrays received too little sunlight.

Computer

The computer on the spacecraft operated using a radiation-hardened RAD6000 32-bit processor card. For storing data when the spacecraft was unable to communicate with Earth, the processor card was able to store 128 megabytes, 20% of which was occupied by the flight system software. The system software is a form of VxWorks, an embedded operating system developed by Wind River Systems.

Scientific instruments

Navigation Camera (NC)
The camera is intended for targeting comet Wild 2 during the flyby of the nucleus. It captures black and white images through a filter wheel making it possible to assemble color images and detect certain gas and dust emissions in the coma. It also captures images at various phase angles, making it possible to create a three-dimensional model of a target to better understand the origin, morphology, and mineralogical inhomogeneities on the surface of the nucleus. The camera utilizes the optical assembly from the Voyager Wide Angle Camera. It is additionally fitted with a scanning mirror to vary the viewing angle and avoid potentially damaging particles. For environmental testing and verification of the NAVCAM the only remaining Voyager spare camera assembly was used as a collimator for testing of the primary imaging optics. A target at the focal point of the spare was imaged through the optical path of the NAVCAM for verification.
Objectives
  • Determine the position of Comet P/Wild 2 during the approach and encounter
  • Obtain high resolution images of the nucleus
Cometary and Interstellar Dust Analyzer (CIDA)
The dust analyzer is a mass spectrometer able to provide real-time detection and analysis of certain compounds and elements. Particles enter the instrument after colliding with a silver impact plate and traveling down a tube to the detector. The detector is then able to detect the mass of separate ions by measuring the time taken for each ion to enter and travel through the instrument. Identical instruments were also included on Giotto and Vega 1 and 2.
Objectives
Dust Flux Monitor Instrument (DFMI)
Located on the Whipple shield at the front of the spacecraft, the sensor unit provides data regarding the flux and size distribution of particles in the environment around Wild 2. It records data by generating electric pulses as a special polarized plastic (PVDF) sensor is struck by high energy particles as small as a few micrometers.
Objectives
  • Record quantitative measurements of the particle impact rate and particle mass distribution throughout the flyby of Comet Wild 2.
  • Establish the physical processes of dust emission from the nucleus, their propagation to form a coma, and the behavior of dust jets.
  • Provide measurements of the dust flux at least once per second, and up to 10 times per second.
  • Provide important information on the dust environment relevant to engineering concerns for spacecraft health and interpretation of anomalies.
Stardust Sample Collection (SSC)
The particle collector uses aerogel, a low-density, inert, microporous, silica-based substance, to capture dust grains as the spacecraft passes through the coma of Wild 2. After sample collection was complete, the collector receded into the Sample Return Capsule for entering the Earth's atmosphere. The capsule with encased samples would be retrieved from Earth's surface and studied.
Objectives
  • Determine the elemental, chemical, and mineralogical composition of Wild 2 at the submicron scale.
  • Determine which compounds dominate the organic fraction of Wild 2.
  • Establish the building materials of Wild 2 found in interplanetary dust particles (IDP) and meteorites.
  • Determine the extent of the building materials of Wild 2 found in interplanetary dust particles (IDP) and meteorites.
  • Establish if IDPs are consistent with Wild 2 samples.
  • Determine if pyroxenerich chondritic aggregate IDPs are cometary.
  • Establish if amino acids, quinones, amphiphiles, or other molecules of exobiological interest are present.
  • Determine the state of H2O in Wild 2.
  • Determine if there was mixing of inner nebula materials (i.e., high-temperature condensates) in the region of comet formation in the outer nebula.
  • Characterize isotopic anomalies present which could provide signatures of the place of origin of interstellar grains
  • Determine the high deuterium-to-hydrogen ratios seen in some IDPs common in Wild 2 solids
  • Characterize the nature of the carbonaceous material in Wild 2, and the relationship to silicates and other mineral phases or constraints in the processes by which they were formed (ion-molecule, gas-grain, irradiation of ices, etc.)
  • Determine if there are organic refractory mantles on silicate grains and if they resemble the organics found in IDPs and meteorites
  • Provide evidence of preaccretional processing of grains (cosmic ray tracks, sputtered rims, altered mineralogy, etc.)
  • Determine if GEMS (Glass with Embedded Fe Ni Metal and Sulfides) are present
Dynamic Science Experiment (DSE)
The experiment will primarily utilize the X band telecommunications system to conduct radio science on Wild 2, to determine the mass of the comet; secondarily the inertial measurement unit is utilized to estimate the impact of large particle collisions on the spacecraft.
Objectives
  • Determine the mass and bulk density of Comet Wild 2.
  • Determine the coma density and constrain the particle size distribution for Comet Wild 2.
  • Sound the solar corona at X band, including electron content of the inner corona, solar wind acceleration, turbulence, and a search for coronal mass ejections.

Sample collection

Comet and interstellar particles are collected in ultra low density aerogel. The tennis racket-sized collector tray contained ninety blocks of aerogel, providing more than 1,000 square centimeters of surface area to capture cometary and interstellar dust grains.

To collect the particles without damaging them, a silicon-based solid with a porous, sponge-like structure is used in which 99.8 percent of the volume is empty space. Aerogel has 1⁄1000 the density of glass, another silicon-based solid to which it may be compared. When a particle hits the aerogel, it becomes buried in the material, creating a long track, up to 200 times the length of the grain. The aerogel was packed in an aluminium grid and fitted into a Sample Return Capsule (SRC), which was to be released from the spacecraft as it passed Earth in 2006.

To analyze the aerogel for interstellar dust, one million photographs will be needed to image the entirety of the sampled grains. The images will be distributed to home computer users to aid in the study of the data using a program titled, Stardust@home. In April 2014, NASA reported they had recovered seven particles of interstellar dust from the aerogel.

Images of the spacecraft
  • Diagram of the spacecraft Diagram of the spacecraft
  • Stardust capsule with aerogel collector deployed Stardust capsule with aerogel collector deployed
  • Stardust awaiting testing of the solar arrays Stardust awaiting testing of the solar arrays
  • The solar arrays being checked in the Payload Hazardous Servicing Facility The solar arrays being checked in the Payload Hazardous Servicing Facility
  • Stardust being checked before encapsulation Stardust being checked before encapsulation

Stardust microchip

Stardust was launched carrying two sets of identical pairs of square 10.16-centimeter (4 in) silicon wafers. Each pair featured engravings of well over one million names of people who participated in the public outreach program by filling out internet forms available in late 1997 and mid-1998. One pair of the microchips was positioned on the spacecraft and the other was attached to the sample return capsule.

Mission profile

Launch and trajectory

Animation of Stardust's trajectory from 7 February 1999 to 7 April 2011
  Stardust ·   81P/Wild ·   Earth ·   5535 Annefrank ·   Tempel 1

Stardust was launched at 21:04:15 UTC on 7 February 1999, by the National Aeronautics and Space Administration from Space Launch Complex 17A at the Cape Canaveral Air Force Station in Florida, aboard a Delta II 7426 launch vehicle. The complete burn sequence lasted for 27 minutes bringing the spacecraft into a heliocentric orbit that would bring the spacecraft around the Sun and past Earth for a gravity assist maneuver in 2001, to reach asteroid 5535 Annefrank in 2002 and Comet Wild 2 in 2004 at a low flyby velocity of 6.1 km/s. In 2004, the spacecraft performed a course correction that would allow it to pass by Earth a second time in 2006, to release the Sample Return Capsule for a landing in Utah in the Bonneville Salt Flats.

During the second encounter with Earth, the Sample Return Capsule was released on Jan 15, 2006. Immediately afterwards, Stardust was put into a "divert maneuver" to avoid entering the atmosphere alongside the capsule. Under twenty kilograms of propellant remained onboard after the maneuver. On 29 January 2006, the spacecraft was put in hibernation mode with only the solar panels and receiver active, in a 3-year heliocentric orbit that would return it to Earth vicinity on 14 January 2009.

A subsequent mission extension was approved on 3 July 2007, to bring the spacecraft back to full operation for a flyby of Comet Tempel 1 in 2011. The mission extension was the first to revisit a small Solar System body and used the remaining propellant, signaling the end of the useful life for the spacecraft.

Timeline of travel
Date Event
1999-02-07 Spacecraft launched at 21:04:15.238 UTC
2000-05-01 Stardust Sample Collection test.
2000-11-15 Earth gravity assist maneuver
Time Event
2001-01-15
11:14:28 Closest approach to Earth at 6,008 km (3,733 mi), flying by a point just southeast of the southern tip of Africa.
2001-02-15 Phase Stop
2002-04-18 New record in spaceflight set: furthest solar powered object at 2.72 AU.
2002-11-02 Flyby encounter with 5535 Annefrank
Time Event
2002-11-02
4:50:20 Closest approach to Annefrank at 3,079 km (1,913 mi).
2002-11-05 Phase Stop
2004-01-02 Flyby encounter with Wild 2
Time Event
2003-12-24
Stardust Sample Collector deployed
2004-01-02
13:49:00 "Encounter sequence" of onboard computer commands begins
14:19:00 Cometary and interstellar dust analyzer instrument configured.
17:19:00 Navigation camera takes approach image.
18:19:00 Navigation camera takes approach image.
19:04:00 Dust flux monitor instrument turned on.
19:12:00 Stops sending data, transmits carrier signal only.
19:13:00 Final roll maneuver to adjust encounter orientation.
19:21:28 Closest approach to Wild 2 at 237 km (147 mi).
19:25:00 Navigation camera ends period of highest frequency imaging
19:25:00 Roll maneuver to take spacecraft out of encounter orientation
19:26:00 Resumes sending data instead of carrier signal
19:27:00 Navigation camera takes final picture
19:29:00 Navigation camera turned off
19:36:00 Begins transmitting images, dust flux monitor data
2004-01-03
13:19:00 Cometary and interstellar dust analyzer returned to cruise mode
13:19:00 "Encounter sequence" of computer commands ends
2004-02-21 Phase Stop
2006-01-15 Earth return of sample capsule.
Time Event
2006-01-15
09:57:00 Sample Return Capsule reentry.
10:12:00 Sample Return Capsule touchdown.
2006-01-16 Phase Stop
2011-02-15 Flyby encounter with Tempel 1.
Time Event
2011-02-15
Encounter -20 minutes DFMI recording started.
Encounter -4 minutes NavCam observations started.
04:39:10 Closest approach to Tempel 1 at a distance of 181 km (112 mi).
Encounter +4 minutes NavCam observations ended. 72 images captured.
Encounter +20 minutes DFMI recording ended.
Encounter +1 hour High-gain antenna turned to Earth.
2006-02-16 Phase Stop
2011-03-24 End of mission.
Time Event
2011-03-24
23:00:00 Start of burn to consume remaining fuel.
23:33:00 Transmitter switched off.
2011-03-24 Phase Stop
  • Exploded diagram of the Delta II vehicle with Stardust Exploded diagram of the Delta II vehicle with Stardust.
  • Photo of Stardust during launch with a Delta II launch vehicle Stardust during launch with a Delta II launch vehicle.
  • Trajectory of the Stardust spacecraft Trajectory of the Stardust spacecraft en route to Wild 2.

Encounter with Annefrank

Main article: 5535 Annefrank

At 04:50:20 UTC on 2 November 2002, Stardust encountered asteroid 5535 Annefrank from a distance of 3,079 km (1,913 mi). The solar phase angle ranged from 130 degrees to 47 degrees during the period of observations. This encounter was used primarily as an engineering test of the spacecraft and ground operations in preparation for the encounter with Comet Wild 2 in 2003.

  • Image of asteroid Annefrank captured on 2 November 2002 Image of asteroid Annefrank captured on 2 November 2002
  • A false-color image of asteroid Annefrank showing the irregular shape of the small solar system body False-color image of asteroid Annefrank

Encounter with Wild 2

At 19:21:28 UTC, on 2 January 2004, Stardust encountered Comet Wild 2 on the sunward side with a relative velocity of 6.1 km/s at a distance of 237 km (147 mi). The original encounter distance was planned to be 150 km (93 mi), but this was changed after a safety review board increased the closest approach distance to minimize the potential for catastrophic dust collisions.

The relative velocity between the comet and the spacecraft was such that the comet actually overtook the spacecraft from behind as they traveled around the Sun. During the encounter, the spacecraft was on the Sunlit side of the nucleus, approaching at a solar phase angle of 70 degrees, reaching a minimum angle of 3 degrees near closest approach and departing at a phase angle of 110 degrees. The AutoNav software was used during the flyby.

During the flyby the spacecraft deployed the Sample Collection plate to collect dust grain samples from the coma, and took detailed pictures of the icy nucleus.

  • Comet Wild 2 as seen from Stardust on 2 January 2004 Comet Wild 2 as seen from Stardust on 2 January 2004
  • Image of Wild 2 taken during the closest approach phase Image of Wild 2 taken during the closest approach phase
  • An overexposed image of Wild 2 showing plumes of material coming from the surface An overexposed image of Wild 2 showing plumes of material
  • A three-dimensional anaglyph of comet Wild 2 A 3D anaglyph of comet Wild 2

New Exploration of Tempel 1 (NExT)

A spacecraft fires its boosters to deplete its fuel, ending its mission.
Artist's impression of the Stardust spacecraft performing a burn-to-depletion at the end of the Stardust NExT mission.

On 19 March 2006, Stardust scientists announced that they were considering the possibility of redirecting the spacecraft on a secondary mission to image Comet Tempel 1. The comet was previously the target of the Deep Impact mission in 2005, sending an impactor into the surface. The possibility of this extension could be vital for gathering images of the impact crater which Deep Impact was unsuccessful in capturing due to dust from the impact obscuring the surface.

On 3 July 2007 the mission extension was approved and renamed New Exploration of Tempel 1 (NExT). This investigation would provide the first look at the changes to a comet nucleus produced after a close approach to the Sun. NExT also would extend the mapping of Tempel 1, making it the most mapped comet nucleus to date. This mapping would help address the major questions of comet nucleus geology. The flyby mission was expected to consume almost all of the remaining fuel, signaling the end of the operability of the spacecraft. The AutoNav software (for autonomous navigation) would control the spacecraft for the 30 minutes prior to encounter.

The mission objectives included the following:

Primary objectives
  • Extend the current understanding of the processes that affect the surfaces of comet nuclei by documenting the changes that have occurred on Comet Tempel 1 between two successive perihelion passages, or orbits around the Sun.
  • Extend the geologic mapping of the nucleus of Tempel 1 to elucidate the extent and nature of layering, and help refine models of the formation and structure of comet nuclei.
  • Extend the study of smooth flow deposits, active areas and known exposure of water ice.
Secondary objectives
  • Potentially image and characterize the crater produced by Deep Impact in July 2005, to better understand the structure and mechanical properties of cometary nuclei and elucidate crater formation processes on them.
  • Measure the density and mass distribution of dust particles within the coma using the Dust Flux Monitor Instrument.
  • Analyze the composition of dust particles within the coma using the Comet and Interstellar Dust Analyzer instrument.

Encounter with Tempel 1

Main article: 9P/Tempel

At 04:39:10 UTC on 15 February 2011, Stardust-NExT encountered Tempel 1 from a distance of 181 km (112 mi). An estimated 72 images were acquired during the encounter. These showed changes in the terrain and revealed portions of the comet never seen by Deep Impact. The impact site from Deep Impact was also observed, though it was barely visible due to material settling back into the crater.

  • Tempel 1 from the Stardust-NExT spacecraft during closest approach. Tempel 1 from the Stardust-NExT spacecraft during closest approach
  • 'Before and after' comparison images from Deep Impact and Stardust, showing the crater formed by Deep Impact on the right hand image. 'Before and after' comparison images of Tempel 1 by Deep Impact (left) and Stardust (right)

End of extended mission

On 24 March 2011 at approximately 23:00 UTC, Stardust conducted a burn to consume its remaining fuel. The spacecraft had little fuel left and scientists hoped the data collected would help in the development of a more accurate system for estimating fuel levels on spacecraft. After the data had been collected, no further antenna aiming was possible and the transmitter was switched off. The spacecraft sent an acknowledgement from approximately 312 million km (194 million mi) away in space.

Sample return

the landing capsule as seen on the ground at the Utah Test and Training range
Landing capsule as seen by the recovery team

On 15 January 2006, at 05:57 UTC, the Sample Return Capsule successfully separated from Stardust. The SRC re-entered the Earth's atmosphere at 09:57 UTC, with a velocity of 12.9 km/s, the fastest reentry speed into Earth's atmosphere ever achieved by a human-made object. The capsule followed a drastic reentry profile, going from a velocity of Mach 36 to subsonic speed within 110 seconds. Peak deceleration was 34 g, encountered 40 seconds into the reentry at an altitude of 55 km over Spring Creek, Nevada. The phenolic-impregnated carbon ablator (PICA) heat shield, produced by Fiber Materials Inc., reached a temperature of more than 2,900 °C during this steep reentry. The capsule then parachuted to the ground, finally landing at 10:12 UTC at the Utah Test and Training Range, near the U.S. Army Dugway Proving Ground. The capsule was then transported by military aircraft from Utah to Ellington Air Force Base in Houston, Texas, then transferred by road in an unannounced convoy to the Planetary Materials Curatorial facility at Johnson Space Center in Houston to begin analysis.

Sample processing

Visible dust grains in the aerogel collector
Visible dust grains in the aerogel collector

The sample container was taken to a clean room with a cleanliness factor 100 times that of a hospital operating room to ensure the interstellar and comet dust was not contaminated. Preliminary estimations suggested at least a million microscopic specks of dust were embedded in the aerogel collector. Ten particles were found to be at least 100 micrometers (0.1 mm) and the largest approximately 1,000 micrometers (1 mm). An estimated 45 interstellar dust impacts were also found on the sample collector, which resided on the back side of the cometary dust collector. Dust grains are being observed and analyzed by a volunteer team through the citizen science project, Stardust@Home.

The combined mass of the harvested sample was approximately 1 mg.

In December 2006, seven papers were published in the scientific journal Science, discussing initial details of the sample analysis. Among the findings are: a wide range of organic compounds, including two that contain biologically usable nitrogen; indigenous aliphatic hydrocarbons with longer chain lengths than those observed in the diffuse interstellar medium; abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene, proving consistency with the mixing of Solar System and interstellar matter, previously deduced spectroscopically from ground observations; hydrous silicates and carbonate minerals were found to be absent, suggesting a lack of aqueous processing of the cometary dust; limited pure carbon (CHON) was also found in the samples returned; methylamine and ethylamine was found in the aerogel but was not associated with specific particles.

In 2010, Dr. Andrew Westphal announced that Stardust@home volunteer Bruce Hudson found a track (labeled "I1043,1,30") among the many images of the aerogel that may contain an interstellar dust grain. The program allows for any volunteer discoveries to be recognized and named by the volunteer. Hudson named his discovery "Orion".

Stardust@Home certificate

In April 2011, scientists from the University of Arizona discovered evidence for the presence of liquid water in Comet Wild 2. They have found iron and copper sulfide minerals that must have formed in the presence of water. The discovery shatters the existing paradigm that comets never get warm enough to melt their icy bulk. In the spring of 2014, the recovery of particles of interstellar dust from the Discovery program's Stardust mission was announced.

The Stardust samples are currently available for everyone to identify after completing the training at Berkeley webpage.

Spacecraft location

The return capsule is currently located at the National Air and Space Museum in Washington, D.C. It began exhibition there on 1 October 2008, the 50th anniversary of the establishment of NASA. The return capsule is displayed in sample collection mode, alongside a sample of the aerogel used to collect samples.

Results

The comet samples show that the outer regions of the early Solar System were not isolated and were not a refuge where interstellar materials could commonly survive. The data suggest that high-temperature inner Solar System material formed and was subsequently transferred to the Kuiper belt.

Glycine

In 2009 it was announced by NASA that scientists had identified one of the fundamental chemical building blocks of life in a comet for the first time: glycine, an amino acid, was detected in the material ejected from Comet Wild 2 in 2004 and captured by the Stardust probe. Glycine has been detected in meteorites before and there are also observations in interstellar gas clouds, but the Stardust find is described as a first in cometary material. Isotope analysis indicates that the Late Heavy Bombardment included cometary impacts after the Earth coalesced but before life evolved. Carl Pilcher, who leads NASA's Astrobiology Institute commented that "The discovery of glycine in a comet supports the idea that the fundamental building blocks of life are prevalent in space, and strengthens the argument that life in the universe may be common rather than rare."

See also

References

  1. ^ "Stardust Launch" (PDF). jpl.nasa.gov (Press Kit). NASA. February 1999. Archived (PDF) from the original on 16 November 2001.
  2. "Stardust". solarsystem.nasa.gov. NASA. Retrieved 2 December 2022.
  3. "Instrument Host Information: Stardust". Planetary Data System. NASA. Retrieved 20 January 2018.
  4. ^ "Stardust/NExT". nssdc.gsfc.nasa.gov. NASA. Retrieved 20 January 2018.
  5. ^ D. C. Agle; Dwayne Brown (25 March 2011). "NASA Stardust Spacecraft Officially Ends Operations". nasa.gov. NASA. Archived from the original on 10 April 2016. Retrieved 16 January 2016.
  6. ^ Hazel Muir (15 January 2006). "Pinch of comet dust lands safely on Earth". New Scientist. Retrieved 20 January 2018.
  7. ^ "Mission Information: Stardust". Planetary Data System. Retrieved 20 January 2018.
  8. ^ "Mission Information: NExT". Planetary Data System. Retrieved 20 January 2018.
  9. ^ Tony Greicius, ed. (14 February 2011). "NASA's Stardust Spacecraft Completes Comet Flyby". NASA. Archived from the original on 4 June 2017. Retrieved 20 January 2018.
  10. Chris Dolmetsch (15 January 2006). "NASA Spacecraft Returns With Comet Samples After 2.9 Bln Miles". Bloomberg News. Archived from the original on 28 March 2014.
  11. D. C. Agle; Dwayne Brown; William Jeffs (14 August 2014). "Stardust Discovers Potential Interstellar Space Particles". NASA. Retrieved 14 August 2014.
  12. Marcia Dunn (14 August 2014). "Specks returned from space may be alien visitors". AP News. Retrieved 14 August 2014.
  13. Eric Hand (14 August 2014). "Seven grains of interstellar dust reveal their secrets". Science. Retrieved 14 August 2014.
  14. A. J. Westphal; R. M. Stroud; H. A. Bechtel; F. E. Brenker; A. L. Butterworth; G. J. Flynn; D. R. Frank; Z. Gainsforth; J. K. Hillier; et al. (2014). "Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft" (PDF). Science. 345 (6198): 786–791. Bibcode:2014Sci...345..786W. doi:10.1126/science.1252496. hdl:2381/32470. PMID 25124433. S2CID 206556225.
  15. "Comets & The Question of Life". NASA. Archived from the original on 29 April 2001.
  16. ^ "Stardust Flight System Description". stardust.jpl.nasa.gov. NASA. Retrieved 14 February 2011.
  17. ^ R. L. Newburn, Jr.; S. Bhaskaran; T. C. Duxbury; G. Fraschetti; T. Radey; M. Schwochert (14 October 2003). "Stardust Imaging Camera". Journal of Geophysical Research. 108 (8116): 8116. Bibcode:2003JGRE..108.8116N. doi:10.1029/2003JE002081.
  18. "Stardust: Imaging and Navigation Camera". nssdc.gsfc.nasa.gov. NASA. Retrieved 19 February 2011.
  19. ^ J. Kissel; A. Glasmachers; E. Grün; H. Henkel; H. Höfner; G. Haerendel; H. von Hoerner; K. Hornung; E. K. Jessberger; et al. (2003). "Cometary and Interstellar Dust Analyzer for comet Wild 2". Journal of Geophysical Research. 108 (E10): 8114. Bibcode:2003JGRE..108.8114K. doi:10.1029/2003JE002091.
  20. "Stardust: Cometary and Interstellar Dust Analyzer (CIDA)". nssdc.gsfc.nasa.gov. NASA. Retrieved 19 February 2011.
  21. ^ A. J. Tuzzolino (2003). "Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2". Journal of Geophysical Research. 108 (E10): 8115. Bibcode:2003JGRE..108.8115T. doi:10.1029/2003JE002086.
  22. "Stardust: Dust Flux Monitor Instrument (DFMI)". nssdc.gsfc.nasa.gov. NASA. Retrieved 19 February 2011.
  23. ^ P. Tsou; D. E. Brownlee; S. A. Sandford; F. Horz; M. E. Zolensky (2003). "Wild 2 and interstellar sample collection and Earth return". Journal of Geophysical Research. 108 (E10): 8113. Bibcode:2003JGRE..108.8113T. doi:10.1029/2003JE002109.
  24. "Stardust Sample Collection". nssdc.gsfc.nasa.gov. NASA. Retrieved 19 February 2011.
  25. ^ John D. Anderson; Eunice L. Lau; Michael K. Bird; Benton C. Clark; Giacomo Giampieri; Martin Patzold (2003). "Dynamic science on the Stardust mission". Journal of Geophysical Research. 108 (E10): 8117. Bibcode:2003JGRE..108.8117A. doi:10.1029/2003JE002092. S2CID 14492615.
  26. "Stardust: Dynamic Science". nssdc.gsfc.nasa.gov. NASA. Retrieved 19 February 2011.
  27. Aaron L. Gronstal (28 April 2014). "Seven samples from the solar system's birth". phys.org.
  28. Alicia Chang. "Stardust Put In Hibernation Mode". Space.com. Archived from the original on 31 January 2006.
  29. ^ "Stardust/NExT – Five Things About NASA's Valentine's Day Comet". nasa.gov. NASA. 10 February 2011. Archived from the original on 18 June 2017. Retrieved 12 February 2011.
  30. "Stardust: Mission Timeline". nasa.gov (Press release). NASA. 14 February 2011. Archived from the original on 15 April 2015. Retrieved 19 February 2011.
  31. Donald Savage; Martha J. Heil (11 January 2001). "Stardust can see clearly now – just before Earth flyby". stardust.jpl.nasa.gov. NASA. Archived from the original on 29 January 2001.
  32. Steve Gasner; Khaled Sharmit; Paul Stella; Calvin Craig; Susan Mumaw (2003). The Stardust solar array. 3rd World Conference on Photovoltaic Energy Conversion. 11–18 May 2003. Osaka, Japan.
  33. ^ "NASA's Stardust: Good to the Last Drop". nasa.gov. NASA. 23 March 2011. Archived from the original on 27 April 2011. Retrieved 20 January 2018.
  34. David E. Williams (13 January 2006). "Spacecraft bringing comet dust back to Earth". CNN. Archived from the original on 27 January 2006.
  35. Shyam Bhaskaran (2012). "Autonomous Navigation for Deep Space Missions" (PDF). SpaceOps 2012 Conference. doi:10.2514/6.2012-1267135. S2CID 53695269. Archived from the original (PDF) on 13 August 2019.
  36. "Stardust". www.extrasolar-planets.com. Extrasolar-Planets. Archived from the original on 28 August 2009.
  37. ^ "Stardust-NExT" (PDF) (Press Kit). NASA. February 2011. Archived (PDF) from the original on 27 June 2011.
  38. "Stardust: Image Gallery". nasa.gov. NASA. Archived from the original on 17 February 2011.
  39. Kimberly Segal; John Zarrella (16 February 2011). "Crater on comet 'partly healed itself'". CNN. Archived from the original on 25 March 2014.
  40. T. L. Farnham; B. Semenov (January 2010). "Stardust SRC Temperature Data V1.0". Planetary Data System. 8187. NASA. Bibcode:2010PDSS.8187E....F.
  41. "Stardust Sample Return" (PDF). jpl.nasa.gov (Press Kit). NASA. January 2006.
  42. ^ Stardust Reentry Simulation on YouTube Data in the simulation agrees with readings by the airborne observation team monitoring the reentry, available at Archived at Ghostarchive and the Wayback Machine: Stardust Capsule Reentry on YouTube
  43. D. O. ReVelle; W. N. Edwards (2007). "Stardust – An artificial, low-velocity "meteor" fall and recovery: 15 January 2006". Meteoritics & Planetary Science. 42 (2): 271–299. Bibcode:2007M&PS...42..271R. doi:10.1111/j.1945-5100.2007.tb00232.x.
  44. Michael W. Winter; Kerry A. Trumble (2010). "Spectroscopic Observation of the Stardust Re-Entry in the Near UV with SLIT: Deduction of Surface Temperatures and Plasma Radiation" (PDF). NASA.
  45. "NASA's Comet Tale Draws to a Successful Close in Utah Desert". NASA. Retrieved 4 March 2008.
  46. James Oberg (18 January 2006). "Scientists overjoyed with comet samples". MSNBC. Archived from the original on 7 August 2014. Retrieved 1 June 2018.
  47. Mark Carreau (17 January 2006). "Stardust's Cargo Comes to Houston under Veil of Secrecy". www.chron.com. Retrieved 4 March 2008.
  48. "Stardust Sample Collection". Johnson Space Center.
  49. R. Van Boekel; M. Min; Ch. Leinert; L. B. F. M. Waters; A. Richichi; O. Chesneau; C. Dominik; W. Jaffe; A. Dutrey; et al. (2004). "The building blocks of planets within the 'terrestrial' region of protoplanetary disks". Nature. 432 (7016): 479–82. Bibcode:2004Natur.432..479V. doi:10.1038/nature03088. PMID 15565147. S2CID 4362887.
  50. Paul Rincon (5 March 2010). "Probe may have found cosmic dust". BBC News.
  51. A. J. Westphal; C. Allen; S. Bajt; R. Bastien; H. Bechtel; P. Bleuet; J. Borg; F. Brenker; J. Bridges; et al. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain (PDF). 41st Lunar and Planetary Science Conference.
  52. Cecile LeBlanc (7 April 2011). "Evidence for liquid water on the surface of Comet Wild 2". earthsky.org.
  53. "Stardust Interstellar Dust Particles". Johnson Space Center. 13 March 2014. Archived from the original on 14 July 2007.
  54. "Stardust@Home - Stardust Search Finding Stardust". foils.ssl.berkeley.edu. Archived from the original on 24 October 2021. Retrieved 27 August 2021.
  55. "Stardust Return Capsule". airandspace.si.edu. National Air and Space Museum. 27 October 2017.
  56. Don Brownlee (5 February 2014). "The Stardust Mission: Analyzing Samples from the Edge of the Solar System". Annual Review of Earth and Planetary Sciences. 42 (1): 179–205. Bibcode:2014AREPS..42..179B. doi:10.1146/annurev-earth-050212-124203.
  57. Jennifer E. P. Matzel (23 April 2010). "Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission". Science. 328 (5977): 483–486. Bibcode:2010Sci...328..483M. doi:10.1126/science.1184741. OSTI 980892. PMID 20185683. S2CID 206524630.
  58. A. Morbidelli; J. Chambers; Jonathan I. Lunine; J. M. Petit; F. Robert; G. B. Valsecchi; K. E. Cyr (February 2010). "Source regions and timescales for the delivery of water to the Earth". Meteoritics & Planetary Science. 35 (6): 1309–1320. Bibcode:2000M&PS...35.1309M. doi:10.1111/j.1945-5100.2000.tb01518.x.
  59. "'Life chemical' detected in comet". BBC News. 18 August 2009.

External links

NASA Planetary Missions Program Office
Discovery program
Missions
Main
Opportunity
Proposals
Finalists
Candidates
New Frontiers program
Missions
Proposals
Finalists
Candidates
Solar System Exploration program
Missions
  • Underline indicates active current missions
  • Italics indicate missions yet to launch
  • Symbol indicates failure en route or before intended mission data returned
Spacecraft missions to minor planets and comets
Active


Past
Flybys
Orbiters
Landers
Impactors
Sample return
Planned
Proposed
Cancelled or
not developed
Related
  • Probes are listed in chronological order of launch. indicates mission failures.
Planetary defense
Main topics
Defense
Space probes
NEO tracking
Organizations
Potential threats
Related categories
Jet Propulsion Laboratory
Current missions
Past missions
Planned missions
Proposed missions
Canceled missions
Related organizations
21st-century space probes
Active space probes
(deep space missions)
Sun
Moon
Mars
Other planets
Minor planets
Interstellar space
Completed after 2000
(by termination date)
2000s
2010s
2020s
← 1998Orbital launches in 19992000 →
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ).
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).

Categories: