Misplaced Pages

Dirichlet's principle: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 06:51, 6 February 2021 editAdumbrativus (talk | contribs)Extended confirmed users, Page movers8,993 edits See also: Add link to Hilbert's 20th problem← Previous edit Latest revision as of 16:03, 5 November 2024 edit undoShashvat Verma (talk | contribs)Extended confirmed users1,260 edits Added short descriptionTags: Mobile edit Mobile app edit Android app edit App description add 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Concept in potential theory}}
{{distinguish|Pigeonhole principle}} {{distinguish|Pigeonhole principle}}
In ], and particularly in ], '''Dirichlet's principle''' is the assumption that the minimizer of a certain ] is a solution to ]. In ], and particularly in ], '''Dirichlet's principle''' is the assumption that the minimizer of a certain ] is a solution to ].
Line 18: Line 19:


==History== ==History==
The name "Dirichlet's principle" is due to ], who applied it in the study of ].<ref>Monna 1975, p. 33</ref> The name "Dirichlet's principle" is due to ], who applied it in the study of ].<ref>Monna 1975, p. 33</ref>


Riemann (and others such as ] and Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an ]; however, he took for granted the existence of a function that attains the minimum. ] published the first criticism of this assumption in 1870, giving an example of a functional that has a greatest lower bound which is not a minimum value. Weierstrass's example was the functional Riemann (and others such as ] and ]) knew that Dirichlet's integral is bounded below, which establishes the existence of an ]; however, he took for granted the existence of a function that attains the minimum. ] published the first criticism of this assumption in 1870, giving an example of a functional that has a greatest lower bound which is not a minimum value. Weierstrass's example was the functional


:<math>J(\varphi) = \int_{-1}^{1} \left( x \frac{d\varphi}{dx} \right)^2 \, dx </math> :<math>J(\varphi) = \int_{-1}^{1} \left( x \frac{d\varphi}{dx} \right)^2 \, dx </math>
Line 26: Line 27:
where <math>\varphi</math> is continuous on <math></math>, continuously differentiable on <math>(-1,1)</math>, and subject to boundary conditions <math>\varphi(-1)=a</math>, <math>\varphi(1)=b</math> where <math>a</math> and <math>b</math> are constants and <math>a \ne b</math>. Weierstrass showed that <math>\textstyle \inf_\varphi J(\varphi) = 0</math>, but no admissible function <math>\varphi</math> can make <math>J(\varphi)</math> equal 0. This example did not disprove Dirichlet's principle ''per se'', since the example integral is different from Dirichlet's integral. But it did undermine the reasoning that Riemann had used, and spurred interest in proving Dirichlet's principle as well as broader advancements in the ] and ultimately ].<ref>Monna 1975, p. 33–37,43–44</ref><ref>Giaquinta and Hildebrand, p. 43–44</ref> where <math>\varphi</math> is continuous on <math></math>, continuously differentiable on <math>(-1,1)</math>, and subject to boundary conditions <math>\varphi(-1)=a</math>, <math>\varphi(1)=b</math> where <math>a</math> and <math>b</math> are constants and <math>a \ne b</math>. Weierstrass showed that <math>\textstyle \inf_\varphi J(\varphi) = 0</math>, but no admissible function <math>\varphi</math> can make <math>J(\varphi)</math> equal 0. This example did not disprove Dirichlet's principle ''per se'', since the example integral is different from Dirichlet's integral. But it did undermine the reasoning that Riemann had used, and spurred interest in proving Dirichlet's principle as well as broader advancements in the ] and ultimately ].<ref>Monna 1975, p. 33–37,43–44</ref><ref>Giaquinta and Hildebrand, p. 43–44</ref>


In 1900, ] later justified Riemann's use of Dirichlet's principle by developing the ].<ref>Monna 1975, p. 55–56, citing {{citation | last=Hilbert | first=David | title=Über das Dirichletsche Prinzip | journal=Journal für die reine und angewandte Mathematik | year=1905 | volume=129 | pages=63–67 | language=de}}</ref> In 1900, ] later justified Riemann's use of Dirichlet's principle by developing the ].<ref>Monna 1975, p. 55–56, citing {{citation | last=Hilbert | first=David | title=Über das Dirichletsche Prinzip | journal=Journal für die reine und angewandte Mathematik | year=1905 | volume=1905 | issue=129 | pages=63–67 | doi=10.1515/crll.1905.129.63 | s2cid=120074769 | language=de}}</ref>


==See also== ==See also==

Latest revision as of 16:03, 5 November 2024

Concept in potential theory Not to be confused with Pigeonhole principle.

In mathematics, and particularly in potential theory, Dirichlet's principle is the assumption that the minimizer of a certain energy functional is a solution to Poisson's equation.

Formal statement

Dirichlet's principle states that, if the function u ( x ) {\displaystyle u(x)} is the solution to Poisson's equation

Δ u + f = 0 {\displaystyle \Delta u+f=0}

on a domain Ω {\displaystyle \Omega } of R n {\displaystyle \mathbb {R} ^{n}} with boundary condition

u = g {\displaystyle u=g} on the boundary Ω {\displaystyle \partial \Omega } ,

then u can be obtained as the minimizer of the Dirichlet energy

E [ v ( x ) ] = Ω ( 1 2 | v | 2 v f ) d x {\displaystyle E=\int _{\Omega }\left({\frac {1}{2}}|\nabla v|^{2}-vf\right)\,\mathrm {d} x}

amongst all twice differentiable functions v {\displaystyle v} such that v = g {\displaystyle v=g} on Ω {\displaystyle \partial \Omega } (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician Peter Gustav Lejeune Dirichlet.

History

The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions.

Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum. Karl Weierstrass published the first criticism of this assumption in 1870, giving an example of a functional that has a greatest lower bound which is not a minimum value. Weierstrass's example was the functional

J ( φ ) = 1 1 ( x d φ d x ) 2 d x {\displaystyle J(\varphi )=\int _{-1}^{1}\left(x{\frac {d\varphi }{dx}}\right)^{2}\,dx}

where φ {\displaystyle \varphi } is continuous on [ 1 , 1 ] {\displaystyle } , continuously differentiable on ( 1 , 1 ) {\displaystyle (-1,1)} , and subject to boundary conditions φ ( 1 ) = a {\displaystyle \varphi (-1)=a} , φ ( 1 ) = b {\displaystyle \varphi (1)=b} where a {\displaystyle a} and b {\displaystyle b} are constants and a b {\displaystyle a\neq b} . Weierstrass showed that inf φ J ( φ ) = 0 {\displaystyle \textstyle \inf _{\varphi }J(\varphi )=0} , but no admissible function φ {\displaystyle \varphi } can make J ( φ ) {\displaystyle J(\varphi )} equal 0. This example did not disprove Dirichlet's principle per se, since the example integral is different from Dirichlet's integral. But it did undermine the reasoning that Riemann had used, and spurred interest in proving Dirichlet's principle as well as broader advancements in the calculus of variations and ultimately functional analysis.

In 1900, Hilbert later justified Riemann's use of Dirichlet's principle by developing the direct method in the calculus of variations.

See also

Notes

  1. Monna 1975, p. 33
  2. Monna 1975, p. 33–37,43–44
  3. Giaquinta and Hildebrand, p. 43–44
  4. Monna 1975, p. 55–56, citing Hilbert, David (1905), "Über das Dirichletsche Prinzip", Journal für die reine und angewandte Mathematik (in German), 1905 (129): 63–67, doi:10.1515/crll.1905.129.63, S2CID 120074769

References

Categories: