Misplaced Pages

Human germline engineering: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 15:55, 7 November 2018 editHjo2d (talk | contribs)41 editsNo edit summary← Previous edit Latest revision as of 10:02, 2 December 2024 edit undoCitation bot (talk | contribs)Bots5,408,810 edits Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine 
(240 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Process of editing the human genome so that the changes are inherited}}{{Improve lead|date=August 2023}}
'''Human germline engineering''' is the process by which the ] of an individual is edited in such a way that the change is heritable. You deliberately change the genes that are passed on from parents to children. This is achieved through genetic alterations within the ], or the reproductive cells, such as the ] and ].<ref name=":0">{{Cite book|url=https://books.google.com/books?hl=en&lr=&id=9VZ6EF_TUw8C&oi=fnd&pg=PR9&dq=germline+engineering&ots=lW9PFpp5A-&sig=fG0_muv_E5UZu5cVPEjMyYdNhPI#v=onepage&q=germline%20engineering&f=false|title=Engineering the Human Germline: An Exploration of the Science and Ethics of Altering the Genes We Pass to Our Children|last=Stock|first=Gregory|last2=Campbell|first2=John|date=2000-02-03|publisher=Oxford University Press|isbn=9780195350937}}</ref> Human germline engineering should not be confused with ]. Gene therapy consists of altering ]s, which are all cells in the body that are not involved in reproduction. While gene therapy does change the genome of the targeted cells, these cells are not within the germline, so the alterations are not ] and cannot be passed on to the next generation.<ref name=":0" />


'''Human germline engineering''' (HGE) is the process by which the ] of an individual is modified in such a way that the change is heritable. This is achieved by altering the genes of the ], which mature into eggs and sperm. For safety, ethical, and social reasons, the scientific community and the public have concluded that germline editing for reproduction is inappropriate.<ref name=":10">{{Cite journal |last=McGee |first=Andrew |date=2019-10-15 |title=Using the therapy and enhancement distinction in law and policy |url=http://dx.doi.org/10.1111/bioe.12662 |journal=Bioethics |volume=34 |issue=1 |pages=70–80 |doi=10.1111/bioe.12662 |pmid=31617223 |s2cid=204738693 |issn=0269-9702}}</ref><ref name=":11">{{Cite journal |last=Caro-Romero |first=Henry David |date=2020-06-09 |title=Edición genómica heredable: un estudio exploratorio desde la perspectiva del principio bioético de la beneficencia |url=https://revistas.unbosque.edu.co/index.php/RCB/article/view/2732 |journal=Revista Colombiana de Bioética |volume=15 |issue=1 |doi=10.18270/rcb.v15i1.2732 |s2cid=225804689 |issn=2590-9452|doi-access=free }}</ref> HGE is prohibited by law in more than 70 countries<ref name=":3">{{Cite journal |last1=Baylis |first1=Françoise |last2=Darnovsky |first2=Marcy |last3=Hasson |first3=Katie |last4=Krahn |first4=Timothy M. |date=2020-10-01 |title=Human Germline and Heritable Genome Editing: The Global Policy Landscape |journal=The CRISPR Journal |language=en |volume=3 |issue=5 |pages=365–377 |doi=10.1089/crispr.2020.0082 |issn=2573-1599 |pmid=33095042 |s2cid=225053656|doi-access=free }}</ref> and by a binding international treaty of the ].
The first attempt to edit the human germline was reported in 2015, when a group of Chinese scientists used the gene editing technique ] to edit single-celled, non-viable embryos to see the effectiveness of this technique.<ref name=":1">{{Cite journal|last=Cyranoski|first=David|last2=Reardon|first2=Sara|title=Chinese scientists genetically modify human embryos|url=http://www.nature.com/news/chinese-scientists-genetically-modify-human-embryos-1.17378|journal=Nature|doi=10.1038/nature.2015.17378}}</ref> This attempt was rather unsuccessful; only a small fraction of the embryos successfully spliced the new genetic material and many of the embryos contained a large amount of random mutations.<ref name=":1" /><ref name=":3" /> The non-viable embryos that were used contained an extra set of chromosomes, which may have been problematic. In 2016, another similar study was performed in China which also used non-viable embryos with extra sets of chromosomes. This study showed very similar results to the first; there were successful integrations of the desired gene, yet the majority of the attempts failed, or produced undesirable mutations.<ref name=":3">{{Cite journal|last=Callaway|first=Ewen|title=Second Chinese team reports gene editing in human embryos|url=http://www.nature.com/news/second-chinese-team-reports-gene-editing-in-human-embryos-1.19718|journal=Nature|doi=10.1038/nature.2016.19718}}</ref>


In November 2015, a group of Chinese researchers used ]/] to edit single-celled, non-viable embryos to assess its effectiveness. This attempt was unsuccessful; only a small fraction of the embryos successfully incorporated the genetic material and many of the embryos contained a large number of random mutations. The non-viable embryos that were used contained an extra set of chromosomes, which may have been problematic. In 2016, a similar study was performed in China on non-viable embryos with extra sets of chromosomes. This study showed similar results to the first; except that no embryos adopted the desired gene.
The most recent, and arguably most successful, experiment in August 2017 attempted the correction of the heterozygous '']'' mutation associated with ] in human embryos with precise ] targeting. 52% of human embryos were successfully edited to retain only the ] normal copy of MYBPC3 gene, the rest of the embryos were ], where some cells in the ] contained the normal gene copy and some contained the mutation.<ref>{{Cite journal|last=Ma|first=Hong|last2=Marti-Gutierrez|first2=Nuria|last3=Park|first3=Sang-Wook|last4=Wu|first4=Jun|last5=Lee|first5=Yeonmi|last6=Suzuki|first6=Keiichiro|last7=Koski|first7=Amy|last8=Ji|first8=Dongmei|last9=Hayama|first9=Tomonari|date=August 2017|title=Correction of a pathogenic gene mutation in human embryos|url=https://www.nature.com/articles/nature23305|journal=Nature|volume=548|issue=7668|pages=413–419|doi=10.1038/nature23305|issn=1476-4687}}</ref>


In November 2018, researcher ] created the first human babies from genetically edited embryos, known by their pseudonyms, ]. In May 2019, lawyers in China reported that regulations had been drafted that anyone manipulating the human genome would be held responsible for any related adverse consequences.<ref>{{cite journal |vauthors=Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JC, Amato P, Kim JS, Kaul S, Mitalipov S | title = Correction of a pathogenic gene mutation in human embryos | journal = Nature | volume = 548 | issue = 7668 | pages = 413–419 | date = August 2017 | pmid = 28783728 | doi = 10.1038/nature23305 | bibcode = 2017Natur.548..413M | doi-access = free }}{{Expression of Concern|doi=10.1038/nature23305|pmid=28783728|http://retractionwatch.com/2017/09/02/weekend-reads-3/ ''Retraction Watch''|http://retractionwatch.com/2017/10/05/nature-adds-alert-heavily-debated-paper-gene-editing/ ''Retraction Watch''}}</ref>
Human genetic modification is the direct manipulation of the genome using molecular engineering. The two different types of gene modification is "somatic gene modification" and "germline genetic modification. Somatic gene modification adds, cuts, or changes the genes in cells of a living person. Germline gene modification changes the genes in sperm, eggs, and embryos. These modifications would appear in every cell of the human body. Germline modification is yet to be done to a human.


== Techniques ==
__FORCETOC__
=== CRISPR-Cas9 ===
{{Main|CRISPR|Cas9}}
The CRISPR-Cas9 system consists of an enzyme called ] and a special piece of ] (gRNA). Cas9 acts as a pair of ‘molecular scissors’ that can cut the DNA at a specific location in the genome so that genes can be added or removed. The guide RNA has complementary bases to those at the target location, so it binds only there. Once bound Cas9 makes a cut across both DNA strands allowing base pairs to inserted/removed. Afterwards, the cell recognizes that the DNA is damaged and tries to repair it.<ref>{{cite journal | vauthors = Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, Garrison NA, Hercher L, Isasi R, Middleton A, Musunuru K, Shriner D, Virani A, Young CE | display-authors = 6 | title = Human Germline Genome Editing | journal = American Journal of Human Genetics | volume = 101 | issue = 2 | pages = 167–176 | date = August 2017 | pmid = 28777929 | pmc = 5544380 | doi = 10.1016/j.ajhg.2017.06.012 }}</ref>


Although CRISPR/Cas9 can be used in humans,<ref>{{Cite journal|last1=Rodríguez-Rodríguez|first1=Diana Raquel|last2=Ramírez-Solís|first2=Ramiro|last3=Garza-Elizondo|first3=Mario Alberto|last4=Garza-Rodríguez|first4=María De Lourdes|last5=Barrera-Saldaña|first5=Hugo Alberto|date=April 2019|title=Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review)|journal=International Journal of Molecular Medicine|volume=43|issue=4|pages=1559–1574|doi=10.3892/ijmm.2019.4112|issn=1791-244X|pmc=6414166|pmid=30816503}}</ref> it is more commonly used in other species or cell culture systems, including in experiments to study genes potentially involved in human diseases.
==CRISPR/cas9==


== Speculative uses ==
CRISPR/cas9 is a genome editing tool that allows scientists to edit the genome by adding or removing sections of DNA. It contains an enzyme and RNA, the enzyme acting like scissors to alter the DNA while the RNA acts as a guide for those enzymes. This system is currently the fastest and cheapest way to genetically engineer on the market today and it's uses are endless. The RNA in the CRISPR/cas9 allows researchers to target specific sequences in the genome making it possible for them to alter one sequences and not the others surrounding them. This is a new technology for scientists in the genomic altering field. <ref>“What Is CRISPR-Cas9?” Facts, The Public Engagement Team at the Wellcome Genome Campus, 19 Dec. 2016, www.yourgenome.org/facts/what-is-crispr-cas9.</ref>


Genetic engineering is in widespread use, particularly in agriculture. Human germline engineering has two potential applications: prevent genetic disorders from passing to descendants, and to modify traits such as height that are not disease related. For example, the ] has a genetic mutation in the ] gene that suppresses the expression of CCR5. This confers ]. Modifying human embryos to give the CCR5 Δ32 allele protects them from the disease.
Although the CRISPR/cas9 cannot yet be used in humans, it allows scientists to target genes more effectively in diploid cells of mammals in order to one day be used in human research. Researchers hope that the can use the system in the future to treat currently incurable diseases by altering the genome altogether.


An other use would be to cure genetic disorders. In the first study published regarding human germline engineering, the researchers attempted to edit the '']'' gene which codes for the human ] protein. ''HBB'' mutations produce ], which can be fatal.<ref name=":1">{{cite journal |last1=Cyranoski |first1=David |last2=Reardon |first2=Sara |date=22 April 2015 |title=Chinese scientists genetically modify human embryos |journal=Nature |pages=nature.2015.17378 |doi=10.1038/nature.2015.17378 |s2cid=87604469}}</ref> Genome editing in patients who have these ''HBB'' mutations would leave copies of the unmutated gene, effectively curing the disease. If the germline could be edited, this normal copy of the ''HBB'' genes could be passed on to future generations.


=== Designer babies ===
==Conceivable uses==
{{Main articles|Designer baby}}
Currently, there are no successfully engineered humans, but there are many prospective uses such as curing genetic diseases and disorders. If perfected, somatic gene editing can promise helping people who are sick. In the first study published regarding human germline engineering, the researchers attempted to edit the '']'' gene which codes for the human β-globin protein.<ref name=":1" /> Mutations in the ''HBB'' gene result in the disorder ], which can be fatal.<ref name=":1" /> Perfect editing of the genome in patients who have these ''HBB'' mutations would result in copies of the gene which do not possess any mutations, effectively curing the disease. The importance of editing the germline would be to pass on this normal copy of the ''HBB'' genes to future generations.
] modifications to humans yield "]", with deliberately-selected traits, possibly extending to its entire genome.<ref name=":2">National Academies of Sciences, Engineering, and Medicine. 2017. Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press. doi: 10.17226/24623.</ref> HGE potentially allows for enhancement of these traits.<ref name=":2" /> The concept has produced strong objections, particularly among bioethicists.<ref>{{Cite book|url={{google books|plainurl=y|id=iWqBAgAAQBAJ}}|title=New Horizons in Medical Anthropology: Essays in Honour of Charles Leslie|last1=Lock|first1=Margaret|last2=Nichter|first2=Mark | name-list-style = vanc |date=2003-09-02|publisher=Routledge|isbn=9781134471287}}</ref>


In a 2019 animal study with Liang Guang small spotted pigs, precise editing of the ] signal peptide yielded increased muscle mass. Myostatin is a negative regulator of muscle growth, so by mutating the gene's signal peptide regions could be promoted. One study mutated myostatin genes in 955 embryos at several locations with CRISPR/cas9 and implanted them into five surrogates, resulting in 16 piglets. Only specific mutations to the myostatin signal peptide increased muscle mass, mainly due to an increase in muscle fibers.<ref>{{Cite journal |last1=Li |first1=Ruiqiang |last2=Zeng |first2=Wu |last3=Ma |first3=Miao |last4=Wei |first4=Zixuan |last5=Liu |first5=Hongbo |last6=Liu |first6=Xiaofeng |last7=Wang |first7=Min |last8=Shi |first8=Xuan |last9=Zeng |first9=Jianhua |last10=Yang |first10=Linfang |last11=Mo |first11=Delin |last12=Liu |first12=Xiaohong |last13=Chen |first13=Yaosheng |last14=He |first14=Zuyong |date=February 2020 |title=Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs |url=http://link.springer.com/10.1007/s11248-020-00188-w |journal=Transgenic Research |language=en |volume=29 |issue=1 |pages=149–163 |doi=10.1007/s11248-020-00188-w |pmid=31927726 |s2cid=255111445 |issn=0962-8819}}</ref> A similar mice study knoced out the myostatin gene, which also increased their muscle mass.<ref>{{Cite journal |last=Professor |first=Apostolos Stergioulas, Ph D. |title=Gene doping in modern sport |date=2021-02-04 |url=https://www.biologyofexercise.com/abs_5_1.html |access-date=2022-12-06 |journal=Journal Biology of Exercise |volume=5 |language=en-US |doi=10.4127/jbe.2009.0021}}</ref> This showed that muscle mass could be increased with germline editing, which is likely applicable to humans because the myostatin gene regulates human muscle growth.<ref>{{Cite journal |last1=Gonzalez-Cadavid |first1=Nestor F. |last2=Taylor |first2=Wayne E. |last3=Yarasheski |first3=Kevin |last4=Sinha-Hikim |first4=Indrani |last5=Ma |first5=Kun |last6=Ezzat |first6=Shereen |last7=Shen |first7=Ruoqing |last8=Lalani |first8=Rukhsana |last9=Asa |first9=Sylvia |last10=Mamita |first10=Mohamad |last11=Nair |first11=Gouri |last12=Arver |first12=Stefan |last13=Bhasin |first13=Shalender |date=1998-12-08 |title=Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting |journal=Proceedings of the National Academy of Sciences |language=en |volume=95 |issue=25 |pages=14938–14943 |doi=10.1073/pnas.95.25.14938 |issn=0027-8424 |pmc=24554 |pmid=9843994|doi-access=free |bibcode=1998PNAS...9514938G }}</ref>
Another possible use of human germline engineering would be ] modifications to humans which would result in what are known as "]". The concept of a "designer baby" is that its entire genetic composition could be selected for.<ref name=":2">National Academies of Sciences, Engineering, and Medicine. 2017. Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press. doi: 10.17226/24623.</ref> In an extreme case, people would be able to effectively create the offspring that they want, with traits of their choosing. Not only does human germline engineering allow for the selection of specific traits, but it also allows for enhancement of these traits.<ref name=":2" /> Using human germline editing for selection and enhancement is currently very heavily scrutinized, and the main driving force behind the movement of trying to ban human germline engineering.<ref>{{Cite book|url=https://books.google.com/books?hl=en&lr=&id=iWqBAgAAQBAJ&oi=fnd&pg=PA240&dq=germline+engineering&ots=sbWZ06LEo_&sig=gS02yzKIDqQ6SRZbKzp4PrgEdf0#v=onepage&q=germline%20engineering&f=false|title=New Horizons in Medical Anthropology: Essays in Honour of Charles Leslie|last=Lock|first=Margaret|last2=Nichter|first2=Mark|date=2003-09-02|publisher=Routledge|isbn=9781134471287}}</ref>


== Research ==
The ability to germline engineer human genetic codes would be the beginning of eradicating incurable diseases such as HIV/AIDS, sickle-cell anemia and multiple forms of cancer that we cannot stop nor cure today <ref>Lanphier, Edward, et al. “Don't Edit the Human Germ Line.” Nature News, Nature Publishing Group, 12 Mar. 2015, www.nature.com/news/don-t-edit-the-human-germ-line-1.17111</ref>. Scientists having the technology to not only eradicate those existing diseases but to prevent them altogether in fetuses would bring a whole new generation of medical technology. There are numerous disease that humans and other mammals obtain that are fatal because scientists have not found a methodized ways to treat them. With germline engineering, doctors and scientists would have the ability to prevent known and future diseases from becoming an epidemic.


HGE is widely debated, and more than 40 countries formally outlaw it.<ref name="NAT-20150312">{{cite journal |vauthors=Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J |date=March 2015 |title=Don't edit the human germ line |journal=Nature |volume=519 |issue=7544 |pages=410–1 |bibcode=2015Natur.519..410L |doi=10.1038/519410a |pmid=25810189 |doi-access=free}}</ref> No legislation explicitly prohibits germline engineering in the United States. The '']'' bans the use of ] funds to engage in human germline modification research.<ref>{{cite journal | vauthors = Cohen IG, Adashi EY | title = SCIENCE AND REGULATION. The FDA is prohibited from going germline | journal = Science | volume = 353 | issue = 6299 | pages = 545–6 | date = August 2016 | pmid = 27493171 | doi = 10.1126/science.aag2960 | bibcode = 2016Sci...353..545C | s2cid = 206651381 }}</ref> In April 2015, a research team published an unsuccessful experiment in which they used CRISPR to edit a gene that is associated with blood disease in non-living human embryos.
== State of research ==
The topic of human germline engineering is a widely debated topic. It is formally outlawed in more than 40 countries. Currently, 15 of 22 Western European nations have outlawed human germline engineering.<ref>{{Cite journal|last=Lanphier|first=Edward|last2=Urnov|first2=Fyodor|last3=Haecker|first3=Sarah Ehlen|last4=Werner|first4=Michael|last5=Smolenski|first5=Joanna|date=2015-03-26|title=Don’t edit the human germ line|url=https://www.nature.com/news/don-t-edit-the-human-germ-line-1.17111|journal=Nature|volume=519|issue=7544|pages=410–411|doi=10.1038/519410a}}</ref> Human germline modification has for many years has been heavily off limits. There is no current legislation in the United States that explicitly prohibits germline engineering, however, the ''Consolidated Appropriation Act of 2016'' banned the use of ] funds to engage in research regarding human germline modifications.<ref>{{Cite journal|last=Cohen|first=I. Glenn|last2=Adashi|first2=Eli Y.|date=2016-08-05|title=The FDA is prohibited from going germline|url=http://science.sciencemag.org/content/353/6299/545|journal=Science|volume=353|issue=6299|pages=545–546|doi=10.1126/science.aag2960|issn=0036-8075|pmid=27493171}}</ref> In recent years, as new founding is known as "gene editing" or "genome editing" has promted speculation about their use in human embryos. In 2014, it has been said about researchers in the US and China working on human embryos. In April of 2015, a research team published an experiment in which they used CRISPR to edit a gene that is associated with blood disease in non-living human embryos. All these experiments were highly unsuccessful, but gene editing tools are used in labs.


Scientists using the CRISPR/cas9 system to modify genetic materials have run into issues when it comes to mammalian alterations due to the complex diploid cells. Studies have been done in microorganisms regarding loss of function genetic screening and some studies using mice as a subject. RNA processes differ between bacteria and mammalian cells and scientists have had difficulties coding for mRNA's translated data without the interference of RNA. Studies have been done using the cas9 nuclease that uses a single guide RNA to allow for larger knockout regions in mice which was successful.<ref>Wang, Tim et al. “Genetic screens in human cells using the CRISPR-Cas9 system” Science (New York, N.Y.) vol. 343,6166 (2013): 80-4. </ref> Altering the genetic sequence of mammals has also been widely debated thus creating a difficult FDA regulation standard for these studies. researchers using CRISPR/Cas9 have run into issues when it comes to mammals due to their complex ]. Studies in microorganisms have examined loss of function genetic screening. Some studies used mice as a subject. Because RNA processes differ between bacteria and mammalian cells, researchers have had difficulties coding for mRNA's translated data without RNA interference. Studies have successfully used a Cas9 nuclease with a single guide RNA to allow for larger knockout regions in mice.<ref>{{cite journal | last1 = Wang | first1 = Tim | display-authors = etal | year = 2014 | title = Genetic screens in human cells using the CRISPR-Cas9 system | journal = Science | volume = 343 | issue = 6166| pages = 80–4 | doi = 10.1126/science.1246981 | bibcode = 2014Sci...343...80W | pmc = 3972032 | pmid = 24336569 }}</ref>

=== Lack of international regulation ===
The lack of international regulation led researchers to attempt to create an international framework of ethical guidelines. The framework lacks the requisite international treaties for enforcement. At the first International Summit on Human Gene Editing in December 2015 researchers issued the first international guidelines.<ref>{{Cite web|url=http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a|title=On Human Gene Editing: International Summit Statement|website=www8.nationalacademies.org|access-date=2019-04-18}}</ref> These guidelines allowed pre-clinical research into gene editing in human cells as long as the embryos were not used to implant pregnancy. Genetic alteration of somatic cells for therapeutic proposes was considered ethically acceptable in part because somatic cells cannot pass modifications to subsequent generations. However the lack of consensus and the risks of inaccurate editing led the conference to call for restraint on germline modifications.

On March 13, 2019 researchers ], ], ], ], Paul Bergfrom and others called for a framework that did not foreclose any outcome, but included a voluntary pledge and a call for a coordinating body to monitor the HGE moratorium with an attempt to reach social consensus before furthering research.<ref>{{cite journal | title = Germline gene-editing research needs rules | journal = Nature | volume = 567 | issue = 7747 | pages = 145 | date = March 2019 | pmid = 30867612 | doi = 10.1038/d41586-019-00788-5 | bibcode = 2019Natur.567..145. | doi-access = free }}</ref> ] announced on December 18, 2018 plans to convene an intentional committee on the topic.<ref>{{Cite web|url=https://www.who.int/ethics/topics/human-genome-editing/en/|archive-url=https://web.archive.org/web/20190222155933/https://www.who.int/ethics/topics/human-genome-editing/en/|url-status=dead|archive-date=February 22, 2019|title=WHO {{!}} Gene editing|website=WHO|access-date=2019-04-18}}</ref>

=== He Jiankui ===
{{Excerpt|He Jiankui affair}}

=== Major studies ===
* The first known HGE research was by Chinese researchers in April 2015 in ''Protein and Cell''.<ref name="PC-20150418">{{cite journal |vauthors=Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J |date=May 2015 |title=CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes |journal=Protein & Cell |volume=6 |issue=5 |pages=363–372 |doi=10.1007/s13238-015-0153-5 |pmc=4417674 |pmid=25894090}}</ref> The researchers used tripronuclear (3PN) ] fertilized by two sperm and therefore non-viable, to investigate ]-mediated gene editing in human cells. The researchers found that while CRISPR/Cas9 could effectively cleave the ], the efficiency of ] directed repair of ''CRISPR/Cas9'' was inefficient and failed in a majority of trials. Problems arose such as off-target cleavage and the competitive recombination of the endogenous delta-globin with ''CRISPR/Cas9'' led to unexpected mutation. The study results indicated that ''HBB'' repair in the embryos occurred preferentially through alternative pathways. In the end only 4 of the 54 zygotes carried the intended genetic information, and even then the successfully edited embryos were mosaics containing the preferential genetic code and the mutation.

* In March 2017, researchers claimed to have successfully edited three viable human embryos.<ref>{{cite journal |vauthors=Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J |date=June 2017 |title=CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein |journal=Molecular Genetics and Genomics |volume=292 |issue=3 |pages=525–533 |doi=10.1007/s00438-017-1299-z |pmid=28251317 |s2cid=16358211}}</ref> The study showed that CRISPR/Cas9 is could effectively be used as a gene-editing tool in human 2PN zygotes, which could potentially lead to a viable pregnancy. The researchers used injection of Cas9 protein complexed with the relevant sgRNAs and homology donors into human embryos. The researchers found homologous recombination-mediated alteration in ''CRISPR/Cas9'' and '']''. The researchers also noted the limitations of their study and called for further research.

* An August 2017 study reported the successful use of ] to edit out a mutation responsible for ].<ref>{{cite journal |display-authors=6 |vauthors=Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JC, Amato P, Kim JS, Kaul S, Mitalipov S |date=August 2017 |title=Correction of a pathogenic gene mutation in human embryos |journal=Nature |volume=548 |issue=7668 |pages=413–419 |bibcode=2017Natur.548..413M |doi=10.1038/nature23305 |pmid=28783728 |doi-access=free}}{{Expression of Concern|doi=10.1038/nature23305|pmid=28783728|http://retractionwatch.com/2017/09/02/weekend-reads-3/ ''Retraction Watch''|http://retractionwatch.com/2017/10/05/nature-adds-alert-heavily-debated-paper-gene-editing/ ''Retraction Watch''}}</ref> &nbsp;The study looked at heterozygous '']'' mutation in human embryos. The study claimed precise CRISPR/Cas9 and homology-directed repair response with high accuracy and precision. By modifying the cell cycle stage at which the DSB was induced, they were able to avoid ] in cleaving embryos, prominent in earlier studies, and achieve a large percentage of homozygous embryos carrying the wild-type '']'' gene without evidence of unintended mutations. The researchers concluded that the technique may be used to correct mutations in human embryos. The claims of this study were however pushed back on by critics who argued the evidence was unpersuasive.

* A June 2018 study researchers reported a potential link for edited cells having increased cancerous potential.<ref>{{cite journal |vauthors=Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J |date=July 2018 |title=CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response |journal=Nature Medicine |volume=24 |issue=7 |pages=927–930 |doi=10.1038/s41591-018-0049-z |pmid=29892067 |s2cid=47018050 |hdl-access=free |hdl=10138/303675}}</ref> The study reported that CRISPR/Cas9 induced DNA damage response and stopped the cell cycle. The study was conducted in human ] cells, and the use of ] led to a selection against cells with a functional ] pathway. The study concluded that ] inhibition might increase HGE efficiency and that ] function would need to be watched when developing CRISPR/Cas9 based therapy.

* A November 2018 study of using CRISPR/Cas9 to correct a single mistaken amino acid in 16 out of 18 attempts in a human embryo. The unusual level of precision was achieved with a base editor (BE) system that was constructed by fusing the ] to the dCas9 protein. The BE system efficiently edited the targeted C to T or G to A without the use of a donor and without DBS formation. The study focused on the '']'' mutation that is causative for ]. The study supported the corrective value of gene therapy for the ''FBN1'' mutation in both somatic and germline cells.<ref>{{cite journal |vauthors=Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J, Huang X |date=November 2018 |title=Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos |url= |journal=Molecular Therapy |language=en |volume=26 |issue=11 |pages=2631–2637 |doi=10.1016/j.ymthe.2018.08.007 |pmc=6224777 |pmid=30166242}}</ref>


== Ethical and moral debates == == Ethical and moral debates ==
{{POV section|date=October 2020}}
As it stands, there is much controversy surrounding human germline engineering. Editing the genes of human embryos is very different, and raises great social and ethical concerns. The scientific community, and global community, are quite divided regarding whether or not human germline engineering should be practiced or not. It is currently banned in many of the leading, developed countries, and highly regulated in the others due to ethical issues.<ref name=":4">{{Cite journal|last=Ishii|first=Tetsuya|date=August 2014|title=Potential impact of human mitochondrial replacement on global policy regarding germline gene modification|journal=Reproductive Biomedicine Online|volume=29|issue=2|pages=150–155|doi=10.1016/j.rbmo.2014.04.001|issn=1472-6491|pmid=24832374}}</ref> The large debate lies in the possibility of eugenics if human germline engineering were to be practiced clinically. This topic is hotly debated because the side opposing human germline modification believes that it will be used to create humans with "perfect", or "desirable" traits.<ref name=":4" /><ref name=":5">{{Cite book|url=https://books.google.com/books?hl=en&lr=&id=E3qsPJb44Q8C&oi=fnd&pg=PR7&dq=human+germline+engineering&ots=8huw0UczmM&sig=P_vkxlt0dpSJFBhCN3DqtSBu6Ck#v=onepage&q=human%20germline%20engineering&f=false|title=Design and Destiny: Jewish and Christian Perspectives on Human Germline Modification|last=Cole-Turner|first=Ronald|date=2008|publisher=MIT Press|isbn=9780262533010}}</ref><ref name=":6">{{Cite book|url=https://books.google.com/books?hl=en&lr=&id=XLjJ4AkYWUgC&oi=fnd&pg=PR7&dq=human+germline+engineering&ots=u7U1rBv9-U&sig=PUpUEhxrI-Dl6pXNfecYeIeDAOs#v=onepage&q=human%20germline%20engineering&f=false|title=Redesigning Humans: Choosing Our Genes, Changing Our Future|last=Stock|first=Gregory|date=2003|publisher=Houghton Mifflin Harcourt|isbn=0618340831}}</ref><ref name=":7">{{Cite web|url=http://search.proquest.com/openview/87f48e99f9751939f95b6c2a3a18fa69/1?pq-origsite=gscholar&cbl=1256|title=Germ-line gene modification and disease prevention: Some me - ProQuest|website=search.proquest.com|access-date=2017-06-09}}</ref><ref name=":8">{{Cite web|url=http://search.proquest.com/openview/153890ac6d6289c595fb772a4602c1b2/1?pq-origsite=gscholar&cbl=40569|title=A slippery slope to human germline modification - ProQuest|website=search.proquest.com|access-date=2017-06-09}}</ref> Those in favor of human germline modification see it as a potential medical tool, or a medical cure for certain diseases that lie within the genetic code.<ref name=":5" /> There is a debate as to if this is morally acceptable as well. Such debate ranges from the ethical obligation to use safe and efficient technology to prevent disease to seeing actual benefit in genetic disabilities.<ref>{{cite journal |last1=Krause |first1=Kenneth W. |title=Editing the Human Germline: Groundbreaking Science and Mind-Numbing Sentiment |journal=] |date=2017 |volume=41 |issue=6 |pages=29-31}}</ref> While typically there is a clash between religion and science, the topic of human germline engineering has shown some unity between the two fields. Several religious positions have been published with regards to human germline engineering. According to them, many see germline modification as being more moral than the alternative, which would be either discarding of the embryo, or birth of a diseased human.<ref name=":5" /><ref name=":7" /><ref name=":8" /> The main conditions when it comes to whether or not it is morally and ethically acceptable lie within the intent of the modification, and the conditions in which the engineering is done.
{{See also|Designer baby#Ethical_considerations}}


As early in the history of biotechnology as 1990, there have been researchers opposed to attempts to modify the human ] using these new tools,<ref>. cioms.ch</ref> and such concerns have continued as technology progressed.<ref>{{cite journal | vauthors = Smith KR, Chan S, Harris J | title = Human germline genetic modification: scientific and bioethical perspectives | journal = Archives of Medical Research | volume = 43 | issue = 7 | pages = 491–513 | date = October 2012 | pmid = 23072719 | doi = 10.1016/j.arcmed.2012.09.003 }}</ref><ref>{{cite journal |last1=Reardon |first1=Sara |title=US science advisers outline path to genetically modified babies |journal=Nature |date=14 February 2017 |pages=nature.2017.21474 |doi=10.1038/nature.2017.21474 |doi-access=free }}</ref> In March 2015, with the advent of new techniques like ], researchers urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited.<ref name="NYT-20150319">{{cite news | last = Wade | first = Nicholas | name-list-style = vanc | title = Scientists Seek Ban on Method of Editing the Human Genome | url = https://www.nytimes.com/2015/03/20/science/biologists-call-for-halt-to-gene-editing-technique-in-humans.html | date =19 March 2015 | work = ] | access-date = 20 March 2015 | quote = The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use.}}</ref> In April 2015, researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR, creating controversy.<ref name="NYT-20150423">{{cite news |last=Kolata |first=Gina | name-list-style = vanc |title=Chinese Scientists Edit Genes of Human Embryos, Raising Concerns |url=https://www.nytimes.com/2015/04/24/health/chinese-scientists-edit-genes-of-human-embryos-raising-concerns.html |date=23 April 2015 |work=] |access-date=24 April 2015 }}</ref>
Another very interesting point on the debate of whether or not it is ethical and moral to engineer the human germline is a perspective of looking at past technologies and how they have evolved. Dr. Gregory Stock discusses the use of several diagnostic tests used to monitor current pregnancies and several diagnostic tests that can be done to determine the health of embryos.<ref name=":6" /> Such tests include amniocentesis, ultrasounds, and other preimplantation genetic diagnostic tests. These tests are quite common, and reliable, as we talk about them today; however, in the past when they were first introduced, they too were scrutinized.<ref name=":6" />


A committee of the American ] and ] gave support to human genome editing in 2017<ref>{{Cite news|url=https://www.nytimes.com/2017/02/14/health/human-gene-editing-panel.html|title=Human Gene Editing Receives Science Panel's Support|last=Harmon|first=Amy| name-list-style = vanc |date=2017-02-14|newspaper=The New York Times|access-date=2017-02-17|issn=0362-4331}}</ref><ref>{{cite web|last1=Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations|title=Human Genome Editing: Science, Ethics, and Governance|url=http://nationalacademies.org/gene-editing/consensus-study/index.htm|website=nationalacademies.org|publisher=National Academy of Sciences; National Academy of Medicine|access-date=21 February 2017}}</ref> once answers have been found to safety and efficiency problems "but only for serious conditions under stringent oversight."<ref>{{Cite web|url=https://nypost.com/2017/02/14/scientists-ok-genetically-engineering-babies/|title=Scientists OK genetically engineering babies|date=2017-02-14|website=New York Post|publisher=Reuters|access-date=2017-02-17}}</ref> The ]'s Council on Ethical and Judicial Affairs stated that "genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics."<ref>{{cite journal | title = Ethical issues related to prenatal genetic testing. The Council on Ethical and Judicial Affairs, American Medical Association | journal = Archives of Family Medicine | volume = 3 | issue = 7 | pages = 633–642 | date = July 1994 | pmid = 7921302 | doi = 10.1001/archfami.3.7.633 }}</ref>
One of the main arguments against human germline engineering lies in the ethical feeling that it will dehumanize children. At an extreme, parents may be able to completely design their own child, and there is a fear that this will transform children into objects, rather than human beings.<ref name=":6" /><ref name=":7" /><ref name=":8" /> There is also a large opposition as people state that by engineering the human germline, there is an attempt at "playing God", and there is a strong opposition to this. One final, and very possible issue that causes a strong opposition of this technology is one that lies within the scientific community itself. Inevitably, this technology would be used for enhancements to the genome, which would likely cause many more to use these same enhancements. By doing this, the genetic diversity of the human race and the human gene pool as we know it would slowly and surely diminish.<ref name=":6" /> Despite the controversy surrounding the topic of human germline engineering, it is slowly and very carefully making its way into many labs around the world. These experiments are highly regulated, and they do not include the use of viable human embryos, which allows scientists to refine the techniques, without posing a threat to any real human beings.<ref name=":6" />


Several religious positions have been published with regards to human germline engineering. According to them, many see germline modification as being more moral than the alternative, which would be either discarding of the embryo, or birth of a diseased human. The main conditions when it comes to whether or not it is morally and ethically acceptable lie within the intent of the modification, and the conditions in which the engineering is done.<ref name=":5">{{Cite book |last=Cole-Turner |first=Ronald |url={{google books|plainurl=y|id=E3qsPJb44Q8C|page=7}}|page=7 |title=Design and Destiny: Jewish and Christian Perspectives on Human Germline Modification |date=2008 |publisher=MIT Press |isbn=9780262533010}}</ref>
== Editing Human germline not humans just yet ==
People believe that gene editing to cure diseases should still be edited. It has been concluded that embryos that are modified shouldn't be turned into humans yet. Human embryos can be edited to prevent heritable diseases. There is too many unanswered scientific questions to allow DNA changes that can be passed on to the next generation that shouldn't leave the lab. Genetically engineering isn't perfect and can lead to error. The consequences could be unfixable. At this time human embryos shouldn't be used to create actual babies. There hasn't been enough research to determine safety of developing mutations of humans that will be passed to generation to generation. We shouldn't allow human gene editing without regulations and only used by when keeping in mind ethics and medical opinions from medical professionals.


Ethical claims about germline engineering include beliefs that every ] has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases.<ref name="Evolution">{{cite journal | vauthors = Powell R, Buchanan A | title = Breaking evolution's chains: the prospect of deliberate genetic modification in humans | journal = The Journal of Medicine and Philosophy | volume = 36 | issue = 1 | pages = 6–27 | date = February 2011 | pmid = 21228084 | doi = 10.1093/jmp/jhq057 }}</ref><ref name="Baylis, Francoise 2004">{{cite journal | vauthors = Baylis F, Robert JS | title = The inevitability of genetic enhancement technologies | journal = Bioethics | volume = 18 | issue = 1 | pages = 1–26 | year = 2004 | pmid = 15168695 | doi = 10.1111/j.1467-8519.2004.00376.x }}</ref><ref>{{cite book|last=Evans|first=John| name-list-style = vanc |title=Playing God?: Human Genetic Engineering and the Rationalization of Public Bioethical Debate|year=2002|publisher=University of Chicago Press | isbn = 978-0-226-22262-2 }}</ref> For parents, genetic engineering could be seen as another child enhancement technique to add to diet, exercise, education, training, cosmetics, and plastic surgery.<ref name="Enhancement">{{Cite web |title=Center for Health Ethics - MU School of Medicine |url=https://medicine.missouri.edu/centers-institutes-labs/health-ethics |access-date=2024-11-23 |website=medicine.missouri.edu|archive-url=https://web.archive.org/web/20131203040308/http://ethics.missouri.edu/Gene-Therapy.aspx |archive-date=3 December 2013 |date=25 April 2013}}</ref><ref name="Roco_Bainbridge_2002">{{cite journal | vauthors = Roco MC, Bainbridge WS | journal = Journal of Nanoparticle Research | year = 2002 | volume = 4 | issue = 4 | pages = 281–295 | doi = 10.1023/A:1021152023349|title=Converging Technologies for Improving Human Performance: Integrating From the Nanoscale | bibcode = 2002JNR.....4..281R | s2cid = 136290217 }}</ref> Another theorist claims that moral concerns limit but do not prohibit germline engineering.<ref>{{cite journal |last1=Allhoff |first1=Fritz |title=Germ-Line Genetic Enhancement and Rawlsian Primary Goods |journal=Kennedy Institute of Ethics Journal |date=2005 |volume=15 |issue=1 |pages=39–56 |doi=10.1353/ken.2005.0007 |pmid=15881795 |citeseerx=10.1.1.566.171 |s2cid=14432440 }}</ref>
CRISPR-Cas9 gene is like nanoscissors, they cut into the genes that need to be changed and replaced. It was found that is was causing errors, and the desired DNA changes were taken up by some cells but not all in the embryo. This can cause them to cut the wrong sequence in an unpredictable fashion. It causes the opposite effect by causing diseases. We don't know all the effects of gene editing yet so germline editing shouldn't be used. We haven't completed developed the control germline editing just yet. This creates the potential to create unintended mutations in the gene.


=== Consent ===
A bigger problem in germline editing is to shape a child so she will have more advantages in life than the parents of the offspring. You could also create a sick or deformed child, which is the opposite of what we want.
One issue related to human genome editing relates to the impact of the technology on future individuals whose genes are modified without their consent. Clinical ethics accepts the idea that parents are, almost always, the most appropriate surrogate medical decision makers for their children until the children develop their own autonomy and decision-making capacity. This is based on the assumption that, except under rare circumstances, parents have the most to lose or gain from a decision and will ultimately make decisions that reflects the future values and beliefs of their children. According to this assumption, it could be assumed that parents are the most appropriate decision makers for their future children as well. However, there are anecdotal reports of children and adults who disagree with the medical decisions made by a parent during pregnancy or early childhood, such as when death was a possible outcome. There are also published patient stories by individuals who feel that they would not wish to change or remove their own medical condition if given the choice and individuals who disagree with medical decisions made by their parents during childhood.<ref name=":4">{{cite journal | vauthors = Ishii T | title = Potential impact of human mitochondrial replacement on global policy regarding germline gene modification | journal = Reproductive Biomedicine Online | volume = 29 | issue = 2 | pages = 150–5 | date = August 2014 | pmid = 24832374 | doi = 10.1016/j.rbmo.2014.04.001 | doi-access = free | hdl = 2115/56864 | hdl-access = free }}</ref>


Other researchers and philosophers have noted that the issue of the lack of prior consent applies as well to individuals born via traditional sexual reproduction.<ref>{{cite journal |last1=Ranisch |first1=Robert |title=Germline Genome Editing and the Functions of Consent |journal=The American Journal of Bioethics |date=2 December 2017 |volume=17 |issue=12 |pages=27–29 |doi=10.1080/15265161.2017.1388875 |pmid=29148947 |s2cid=10117287 }}</ref><ref>{{cite journal |last1=Vassena |first1=R. |last2=Heindryckx |first2=B. |last3=Peco |first3=R. |last4=Pennings |first4=G. |last5=Raya |first5=A. |last6=Sermon |first6=K. |last7=Veiga |first7=A. |title=Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells |journal=Human Reproduction Update |date=June 2016 |volume=22 |issue=4 |pages=411–419 |doi=10.1093/humupd/dmw005 |pmid=26932460 |doi-access=free }}</ref> Philosopher ] further argues that “old-fashioned sexual reproduction is itself an untested genetic experiment”, often compromising a child's wellbeing and pro-social capacities even if the child grows in a healthy environment. According to Pearce, “the question of comes down to an analysis of risk-reward ratios – and our basic ethical values, themselves shaped by our evolutionary past.”<ref>{{Cite book|last=Pearce|first=David|title=Can Biotechnology Abolish Suffering?|year=2017|editor-last=Vinding|editor-first=Magnus|chapter=The Reproductive Revolution|asin=B075MV9KS2|author-link=David Pearce (transhumanist)}}</ref> Bioethicist ] in turn proposes the principle of ], according to which “couples (or single reproducers) should select the child, of the possible children they could have, who is expected to have the best life, or at least as good a life as the others, based on the relevant, available information”.<ref>{{cite journal |last1=Savulescu |first1=Julian |title=Procreative Beneficence: Why We Should Select the Best Children |journal=Bioethics |date=October 2001 |volume=15 |issue=5–6 |pages=413–426 |doi=10.1111/1467-8519.00251 |pmid=12058767 }}</ref> Some ethicists argue that the principle of procreative beneficence would justify or even require ] one's children.<ref>{{Cite journal|last=Veit|first=Walter|date=2018|title=Procreative Beneficence and Genetic Enhancement|url=http://www.kriterion-journal-of-philosophy.org/kriterion/issues/Permanent/Kriterion-veit-01.pdf|journal=KRITERION - Journal of Philosophy|volume=32|pages=75–92|doi=10.1515/krt-2018-320105 |s2cid=149244361 |archive-url=https://web.archive.org/web/20211023193825/http://www.kriterion-journal-of-philosophy.org/kriterion/issues/Permanent/Kriterion-veit-01.pdf|archive-date=October 23, 2021}}</ref><ref>{{cite journal |last1=Daws |first1=Steven |title=Procreative Beneficence in the CRISPR World |journal=Voices in Bioethics |date=6 October 2017 |volume=3 |doi=10.7916/vib.v3i.6031 }}</ref><!-- What about the introduction of parents of "undesirable traits" into their DNA (i.e. by bad habits as smoking, drinking alcohol, excessive eating, lack of exercise. All of these genetic defects thus produced may be inheritable (see epigenetics). Even the choice of the partner influences the genetic makeup in either a good or bad way -see Mendelian laws- (and since most people don't choose a partner based on their genetic makeup (genetic sequencing), this always results in a choice that is not optimal. All of this too is legally allowed, and seemingly uncontroversial. It's not mentioned here yet-->
Human Germline Engineering is the answer to our genetic disorders. Scientists and researchers haven't developed germline editing to its full potential and can cause more harm than good. At this time gene editing shouldn't be used to turned into actual babies because of the risks that is can cause.

A relevant issue concerns “off target effects”, large genomes may contain identical or homologous DNA sequences, and the enzyme complex CRISPR/Cas9 may unintentionally cleave these DNA sequences causing mutations that may lead to cell death. The mutations can cause important genes to be turned on or off, such as genetic anti-cancer mechanisms, that could speed up disease exasperation.<ref name=":4" /><ref name=":6">{{Cite book|url={{google books|plainurl=y|id=XLjJ4AkYWUgC|page=7}}|title=Redesigning Humans: Choosing Our Genes, Changing Our Future|last=Stock|first=Gregory|date=2003|publisher=Houghton Mifflin Harcourt|isbn=978-0618340835}}</ref><ref name=":7">{{cite journal |last1=Wivel |first1=Nelson A. |last2=Walters |first2=LeRoy |title=Germ-Line Gene Modification and Disease Prevention: Some Medical and Ethical Perspectives |journal=Science |date=22 October 1993 |volume=262 |issue=5133 |pages=533–538 |id={{Gale|A14296431}} {{ProQuest|213545041}} |doi=10.1126/science.8211180 |pmid=8211180 |bibcode=1993Sci...262..533W }}</ref><ref name=":8">{{cite journal |last1=Darnovsky |first1=Marcy |title=A slippery slope to human germline modification |journal=Nature |date=July 2013 |volume=499 |issue=7457 |pages=127 |id={{ProQuest|1415758114}} |doi=10.1038/499127a |pmid=23846625 |s2cid=4430248 |doi-access=free |bibcode=2013Natur.499..127D }}</ref><ref>{{Cite journal |last1=Alanis-Lobato |first1=Gregorio |last2=Zohren |first2=Jasmin |last3=McCarthy |first3=Afshan |last4=Fogarty |first4=Norah M. E. |last5=Kubikova |first5=Nada |last6=Hardman |first6=Emily |last7=Greco |first7=Maria |last8=Wells |first8=Dagan |last9=Turner |first9=James M. A. |last10=Niakan |first10=Kathy K. |date=June 2021 |title=Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos |journal=Proceedings of the National Academy of Sciences |language=en |volume=118 |issue=22 |pages=e2004832117 |doi=10.1073/pnas.2004832117 |issn=0027-8424 |pmc=8179174 |pmid=34050011|doi-access=free |bibcode=2021PNAS..11804832A }}</ref>

=== Unequal distribution of benefits ===
The other ethical concern is the potential for “designer babies”, or the creation of humans with "perfect", or "desirable" traits. There is a debate as to if this is morally acceptable as well. Such debate ranges from the ethical obligation to use safe and efficient technology to prevent disease to seeing some actual benefit in genetic disabilities.

There are concerns that the introduction of desirable traits in a certain part of the population (instead of the entire population) could cause economic inequalities (“positional” good){{Clarify|Aren't there already many positional goods as for example poor people may not always be able to pay treatments in hospitals? Also, doesn't exercising also cause beneficial changes in the DNA which is possed on, again causing a genetic positional good, but without genetic editing|date=October 2020}}.<ref>{{cite news |last1=Johnson |first1=Tess |date=3 December 2019 |title=Human genetic enhancement might soon be possible – but where do we draw the line? |work=The Conversation |url=https://theconversation.com/human-genetic-enhancement-might-soon-be-possible-but-where-do-we-draw-the-line-127406}}</ref> However, this is not the case if a same desirable trait would be ] (similar to vaccines).{{Cn|date=July 2023}}

Another ethical concern pertains to potential unequal distribution of benefits, even in the case of genome editing being inexpensive. For example, corporations may be able to take unfair advantage of patent law or other ways of restricting access to genome editing and thereby may increase the inequalities. There are already disputes in the courts where CRISPR-Cas9 patents and access issues are being negotiated.<ref name="Newson & Wrigley 2016">{{cite journal |last1=Newson |first1=Ainsley |last2=Wrigley |first2=Anthony |date=2016 |title=Being human: The ethics, law, and scientific progress of genome editing |url=https://search.informit.org/doi/abs/10.3316/agispt.20190516010395 |journal=AQ - Australian Quarterly |volume=87 |issue=1 |pages=3–8 |id={{Gale|A441491350}} {{ProQuest|2046113711}}}}</ref>

=== Therapeutic and non-therapeutic use ===
There remains debate on if the permissibility of human germline engineering for reproduction is dependent on the use, being either a therapeutic or non-therapeutic application. In a survey by the UK's Royal Society, 76% of participants in the UK supported therapeutic human germline engineering to prevent or correct disease, however for non-therapeutic edits such as enhancing intelligence or altering eye or hair color in embryos, there was only 40% and 31% support, respectively.<ref name=":10" /> There was a similar result in a study at the ], Colombia, where students as well as professors generally agreed that therapeutic genome editing is acceptable, while non-therapeutic genome editing is not.<ref name=":11" />

There is also debate on if there can be a defined distinction between therapeutic and non-therapeutic germline editing. An example would be if two embryos are predicted to grow up to be very short in height. Boy 1 will be short because of a mutation in his Human Growth Hormone gene, while boy 2 will be short because his parents are very short. Editing the embryo of boy 1 to make him of average height would be a therapeutic germline edit, while editing the embryo of boy 2 to be of average height would be a non-therapeutic germline edit. In both cases with no editing of the boys' genomes they would both grow up to be very short, which would decrease their wellbeing in life. Likewise editing both of the boys' genomes would allow them to grow up to be of average height. In this scenario, editing for the same phenotype for being of average height falls under both therapeutic and non-therapeutic germline engineering.<ref>{{Cite journal |last1=Greene |first1=Marsha |last2=Master |first2=Zubin |date=2018-09-01 |title=Ethical Issues of Using CRISPR Technologies for Research on Military Enhancement |url=https://doi.org/10.1007/s11673-018-9865-6 |journal=Journal of Bioethical Inquiry |language=en |volume=15 |issue=3 |pages=327–335 |doi=10.1007/s11673-018-9865-6 |pmid=29968018 |s2cid=49640190 |issn=1872-4353}}</ref>

== Current global policy ==
There is distinction in some country policies, including but not limited to official regulation and legislation, between human germline engineering for reproductive use and for laboratory research. As of October 2020, there are 96 countries that have policies involving the use of germline engineering in human cells.<ref name=":3" />

=== Reproductive use ===
Reproductive use of human germline engineering involves implanting the edited embryo to be born. 70 countries currently explicitly prohibit the use of human germline engineering for use in reproduction, while 5 countries prohibit it for reproduction with exceptions. No countries permit the use of human germline engineering for reproduction.<ref name=":3" />

Countries that explicitly prohibit any use of human germline engineering for reproduction are: ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], the ], the ], ], and the ]<ref name=":3" />

Countries that explicitly prohibit (with exceptions) the use of human germline engineering for reproduction are: ], ], ], ], and the ]<ref name=":3" />

=== Laboratory research ===
Laboratory research use involves human germline engineering restricted to '']'' use, where edited cells will not be implanted to be born. 19 countries currently explicitly prohibit any use of human germline engineering for '']'' use, while 4 prohibit it with exceptions, and 11 permit it.<ref name=":3" />

Countries that explicitly prohibit any use of germline engineering for '']'' use are: ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], ], and the ]<ref name=":3" />

Countries that explicitly prohibit (with exceptions) the use of germline engineering for '']'' use are: ], ], ], and ]<ref name=":3" />

Countries that explicitly permit the use of germline engineering for '']'' use are: ], ], ], ], ], ], ], ], ], the ], and the ]<ref name=":3" /><!-- Global maps would be good to show global policies -->


== See also == == See also ==
* ]
* ] * ]
* ] * ]
* ]
* ] * ]
* ]
==References==

== References ==
{{Reflist}} {{Reflist}}

== Further reading ==
* {{cite book| last1 = Enriquez | first1 = Juan | last2 = Gullans | first2 = Steve | title = Evolving Ourselves: How Unnatural Selection is Changing Life on Earth | date = 2015 | publisher = One World Publications| isbn = 978-1780748412}}
* {{cite book| last = Metzl | first = Jamie |author-link=Jamie Metzl| title = Hacking Darwin: Genetic Engineering and the Future of Humanity | date = 2020 | publisher = ]| location = Naperville, IL }}
* {{cite journal| title=Special Issue: Human Germline Editing | date = 2020 | journal=] | volume=34 | issue=1 | url = https://onlinelibrary.wiley.com/toc/14678519/2020/34/1|url-access=subscription}}
* {{cite book| last = Venter | first = Craig |author-link=Craig Venter| title = Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life | date = 2014 | publisher = ]| location = United Kingdom | isbn = 978-0143125907}}


] ]
]
]
]

Latest revision as of 10:02, 2 December 2024

Process of editing the human genome so that the changes are inherited
This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (August 2023)

Human germline engineering (HGE) is the process by which the genome of an individual is modified in such a way that the change is heritable. This is achieved by altering the genes of the germ cells, which mature into eggs and sperm. For safety, ethical, and social reasons, the scientific community and the public have concluded that germline editing for reproduction is inappropriate. HGE is prohibited by law in more than 70 countries and by a binding international treaty of the Council of Europe.

In November 2015, a group of Chinese researchers used CRISPR/Cas9 to edit single-celled, non-viable embryos to assess its effectiveness. This attempt was unsuccessful; only a small fraction of the embryos successfully incorporated the genetic material and many of the embryos contained a large number of random mutations. The non-viable embryos that were used contained an extra set of chromosomes, which may have been problematic. In 2016, a similar study was performed in China on non-viable embryos with extra sets of chromosomes. This study showed similar results to the first; except that no embryos adopted the desired gene.

In November 2018, researcher He Jiankui created the first human babies from genetically edited embryos, known by their pseudonyms, Lulu and Nana. In May 2019, lawyers in China reported that regulations had been drafted that anyone manipulating the human genome would be held responsible for any related adverse consequences.

Techniques

CRISPR-Cas9

Main articles: CRISPR and Cas9

The CRISPR-Cas9 system consists of an enzyme called Cas9 and a special piece of guide RNA (gRNA). Cas9 acts as a pair of ‘molecular scissors’ that can cut the DNA at a specific location in the genome so that genes can be added or removed. The guide RNA has complementary bases to those at the target location, so it binds only there. Once bound Cas9 makes a cut across both DNA strands allowing base pairs to inserted/removed. Afterwards, the cell recognizes that the DNA is damaged and tries to repair it.

Although CRISPR/Cas9 can be used in humans, it is more commonly used in other species or cell culture systems, including in experiments to study genes potentially involved in human diseases.

Speculative uses

Genetic engineering is in widespread use, particularly in agriculture. Human germline engineering has two potential applications: prevent genetic disorders from passing to descendants, and to modify traits such as height that are not disease related. For example, the Berlin Patient has a genetic mutation in the CCR5 gene that suppresses the expression of CCR5. This confers innate resistance to HIV. Modifying human embryos to give the CCR5 Δ32 allele protects them from the disease.

An other use would be to cure genetic disorders. In the first study published regarding human germline engineering, the researchers attempted to edit the HBB gene which codes for the human β-globin protein. HBB mutations produce β-thalassaemia, which can be fatal. Genome editing in patients who have these HBB mutations would leave copies of the unmutated gene, effectively curing the disease. If the germline could be edited, this normal copy of the HBB genes could be passed on to future generations.

Designer babies

Main article: Designer baby

Eugenic modifications to humans yield "designer babies", with deliberately-selected traits, possibly extending to its entire genome. HGE potentially allows for enhancement of these traits. The concept has produced strong objections, particularly among bioethicists.

In a 2019 animal study with Liang Guang small spotted pigs, precise editing of the myostatin signal peptide yielded increased muscle mass. Myostatin is a negative regulator of muscle growth, so by mutating the gene's signal peptide regions could be promoted. One study mutated myostatin genes in 955 embryos at several locations with CRISPR/cas9 and implanted them into five surrogates, resulting in 16 piglets. Only specific mutations to the myostatin signal peptide increased muscle mass, mainly due to an increase in muscle fibers. A similar mice study knoced out the myostatin gene, which also increased their muscle mass. This showed that muscle mass could be increased with germline editing, which is likely applicable to humans because the myostatin gene regulates human muscle growth.

Research

HGE is widely debated, and more than 40 countries formally outlaw it. No legislation explicitly prohibits germline engineering in the United States. The Consolidated Appropriation Act of 2016 bans the use of US FDA funds to engage in human germline modification research. In April 2015, a research team published an unsuccessful experiment in which they used CRISPR to edit a gene that is associated with blood disease in non-living human embryos.

researchers using CRISPR/Cas9 have run into issues when it comes to mammals due to their complex diploid cells. Studies in microorganisms have examined loss of function genetic screening. Some studies used mice as a subject. Because RNA processes differ between bacteria and mammalian cells, researchers have had difficulties coding for mRNA's translated data without RNA interference. Studies have successfully used a Cas9 nuclease with a single guide RNA to allow for larger knockout regions in mice.

Lack of international regulation

The lack of international regulation led researchers to attempt to create an international framework of ethical guidelines. The framework lacks the requisite international treaties for enforcement. At the first International Summit on Human Gene Editing in December 2015 researchers issued the first international guidelines. These guidelines allowed pre-clinical research into gene editing in human cells as long as the embryos were not used to implant pregnancy. Genetic alteration of somatic cells for therapeutic proposes was considered ethically acceptable in part because somatic cells cannot pass modifications to subsequent generations. However the lack of consensus and the risks of inaccurate editing led the conference to call for restraint on germline modifications.

On March 13, 2019 researchers Eric Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Bergfrom and others called for a framework that did not foreclose any outcome, but included a voluntary pledge and a call for a coordinating body to monitor the HGE moratorium with an attempt to reach social consensus before furthering research. The World Health Organization announced on December 18, 2018 plans to convene an intentional committee on the topic.

He Jiankui

This section is an excerpt from He Jiankui genome editing incident.
He Jiankui

The He Jiankui genome editing incident is a scientific and bioethical controversy concerning the use of genome editing following its first use on humans by Chinese scientist He Jiankui, who edited the genomes of human embryos in 2018. He became widely known on 26 November 2018 after he announced that he had created the first human genetically edited babies. He was listed in Time magazine's 100 most influential people of 2019. The affair led to ethical and legal controversies, resulting in the indictment of He and two of his collaborators, Zhang Renli and Qin Jinzhou. He eventually received widespread international condemnation.

He Jiankui, working at the Southern University of Science and Technology (SUSTech) in Shenzhen, China, started a project to help people with HIV-related fertility problems, specifically involving HIV-positive fathers and HIV-negative mothers. The subjects were offered standard in vitro fertilisation services and in addition, use of CRISPR gene editing (CRISPR/Cas9), a technology for modifying DNA. The embryos' genomes were edited to remove the CCR5 gene in an attempt to confer genetic resistance to HIV. The clinical project was conducted secretly until 25 November 2018, when MIT Technology Review broke the story of the human experiment based on information from the Chinese clinical trials registry. Compelled by the situation, he immediately announced the birth of genome-edited babies in a series of five YouTube videos the same day. The first babies, known by their pseudonyms Lulu (Chinese: 露露) and Nana (娜娜), are twin girls born in October 2018, and the second birth or the third baby born was in 2019, named Amy. He reported that the babies were born healthy.

His actions received widespread criticism, and included concern for the girls' well-being. After his presentation on the research at the Second International Summit on Human Genome Editing at the University of Hong Kong on 28 November 2018, Chinese authorities suspended his research activities the following day. On 30 December 2019, a Chinese district court found He Jiankui guilty of illegal practice of medicine, sentencing him to three years in prison with a fine of 3 million yuan. Zhang Renli and Qin Jinzhou received an 18-month prison sentence and a 500,000-yuan fine, and were banned from working in assisted reproductive technology for life.

He Jiankui has been variously referred to as a "rogue scientist", "China's Dr Frankenstein", and a "mad genius". The impact of human gene editing on resistance to HIV infection and other body functions in experimental infants remains controversial. The World Health Organization has issued three reports on the guidelines of human genome editing since 2019, and the Chinese government has prepared regulations since May 2019. In 2020, the National People's Congress of China passed Civil Code and an amendment to Criminal Law that prohibit human gene editing and cloning with no exceptions; according to the Criminal Law, violators will be held criminally liable, with a maximum sentence of seven years in prison in serious cases.

Major studies

  • The first known HGE research was by Chinese researchers in April 2015 in Protein and Cell. The researchers used tripronuclear (3PN) zygotes fertilized by two sperm and therefore non-viable, to investigate CRISPR/Cas9-mediated gene editing in human cells. The researchers found that while CRISPR/Cas9 could effectively cleave the β-globin gene (HBB), the efficiency of homologous recombination directed repair of CRISPR/Cas9 was inefficient and failed in a majority of trials. Problems arose such as off-target cleavage and the competitive recombination of the endogenous delta-globin with CRISPR/Cas9 led to unexpected mutation. The study results indicated that HBB repair in the embryos occurred preferentially through alternative pathways. In the end only 4 of the 54 zygotes carried the intended genetic information, and even then the successfully edited embryos were mosaics containing the preferential genetic code and the mutation.
  • In March 2017, researchers claimed to have successfully edited three viable human embryos. The study showed that CRISPR/Cas9 is could effectively be used as a gene-editing tool in human 2PN zygotes, which could potentially lead to a viable pregnancy. The researchers used injection of Cas9 protein complexed with the relevant sgRNAs and homology donors into human embryos. The researchers found homologous recombination-mediated alteration in CRISPR/Cas9 and G6PD. The researchers also noted the limitations of their study and called for further research.
  • An August 2017 study reported the successful use of CRISPR to edit out a mutation responsible for congenital heart disease.  The study looked at heterozygous MYBPC3 mutation in human embryos. The study claimed precise CRISPR/Cas9 and homology-directed repair response with high accuracy and precision. By modifying the cell cycle stage at which the DSB was induced, they were able to avoid mosaicism in cleaving embryos, prominent in earlier studies, and achieve a large percentage of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of unintended mutations. The researchers concluded that the technique may be used to correct mutations in human embryos. The claims of this study were however pushed back on by critics who argued the evidence was unpersuasive.
  • A June 2018 study researchers reported a potential link for edited cells having increased cancerous potential. The study reported that CRISPR/Cas9 induced DNA damage response and stopped the cell cycle. The study was conducted in human retinal pigment epithelial cells, and the use of CRISPR led to a selection against cells with a functional p53 pathway. The study concluded that p53 inhibition might increase HGE efficiency and that p53 function would need to be watched when developing CRISPR/Cas9 based therapy.
  • A November 2018 study of using CRISPR/Cas9 to correct a single mistaken amino acid in 16 out of 18 attempts in a human embryo. The unusual level of precision was achieved with a base editor (BE) system that was constructed by fusing the deaminase to the dCas9 protein. The BE system efficiently edited the targeted C to T or G to A without the use of a donor and without DBS formation. The study focused on the FBN1 mutation that is causative for Marfan syndrome. The study supported the corrective value of gene therapy for the FBN1 mutation in both somatic and germline cells.

Ethical and moral debates

The neutrality of this section is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (October 2020) (Learn how and when to remove this message)
See also: Designer baby § Ethical_considerations

As early in the history of biotechnology as 1990, there have been researchers opposed to attempts to modify the human germline using these new tools, and such concerns have continued as technology progressed. In March 2015, with the advent of new techniques like CRISPR, researchers urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited. In April 2015, researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR, creating controversy.

A committee of the American National Academy of Sciences and National Academy of Medicine gave support to human genome editing in 2017 once answers have been found to safety and efficiency problems "but only for serious conditions under stringent oversight." The American Medical Association's Council on Ethical and Judicial Affairs stated that "genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics."

Several religious positions have been published with regards to human germline engineering. According to them, many see germline modification as being more moral than the alternative, which would be either discarding of the embryo, or birth of a diseased human. The main conditions when it comes to whether or not it is morally and ethically acceptable lie within the intent of the modification, and the conditions in which the engineering is done.

Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases. For parents, genetic engineering could be seen as another child enhancement technique to add to diet, exercise, education, training, cosmetics, and plastic surgery. Another theorist claims that moral concerns limit but do not prohibit germline engineering.

Consent

One issue related to human genome editing relates to the impact of the technology on future individuals whose genes are modified without their consent. Clinical ethics accepts the idea that parents are, almost always, the most appropriate surrogate medical decision makers for their children until the children develop their own autonomy and decision-making capacity. This is based on the assumption that, except under rare circumstances, parents have the most to lose or gain from a decision and will ultimately make decisions that reflects the future values and beliefs of their children. According to this assumption, it could be assumed that parents are the most appropriate decision makers for their future children as well. However, there are anecdotal reports of children and adults who disagree with the medical decisions made by a parent during pregnancy or early childhood, such as when death was a possible outcome. There are also published patient stories by individuals who feel that they would not wish to change or remove their own medical condition if given the choice and individuals who disagree with medical decisions made by their parents during childhood.

Other researchers and philosophers have noted that the issue of the lack of prior consent applies as well to individuals born via traditional sexual reproduction. Philosopher David Pearce further argues that “old-fashioned sexual reproduction is itself an untested genetic experiment”, often compromising a child's wellbeing and pro-social capacities even if the child grows in a healthy environment. According to Pearce, “the question of comes down to an analysis of risk-reward ratios – and our basic ethical values, themselves shaped by our evolutionary past.” Bioethicist Julian Savulescu in turn proposes the principle of procreative beneficence, according to which “couples (or single reproducers) should select the child, of the possible children they could have, who is expected to have the best life, or at least as good a life as the others, based on the relevant, available information”. Some ethicists argue that the principle of procreative beneficence would justify or even require genetically enhancing one's children.

A relevant issue concerns “off target effects”, large genomes may contain identical or homologous DNA sequences, and the enzyme complex CRISPR/Cas9 may unintentionally cleave these DNA sequences causing mutations that may lead to cell death. The mutations can cause important genes to be turned on or off, such as genetic anti-cancer mechanisms, that could speed up disease exasperation.

Unequal distribution of benefits

The other ethical concern is the potential for “designer babies”, or the creation of humans with "perfect", or "desirable" traits. There is a debate as to if this is morally acceptable as well. Such debate ranges from the ethical obligation to use safe and efficient technology to prevent disease to seeing some actual benefit in genetic disabilities.

There are concerns that the introduction of desirable traits in a certain part of the population (instead of the entire population) could cause economic inequalities (“positional” good). However, this is not the case if a same desirable trait would be introduced over the entire population (similar to vaccines).

Another ethical concern pertains to potential unequal distribution of benefits, even in the case of genome editing being inexpensive. For example, corporations may be able to take unfair advantage of patent law or other ways of restricting access to genome editing and thereby may increase the inequalities. There are already disputes in the courts where CRISPR-Cas9 patents and access issues are being negotiated.

Therapeutic and non-therapeutic use

There remains debate on if the permissibility of human germline engineering for reproduction is dependent on the use, being either a therapeutic or non-therapeutic application. In a survey by the UK's Royal Society, 76% of participants in the UK supported therapeutic human germline engineering to prevent or correct disease, however for non-therapeutic edits such as enhancing intelligence or altering eye or hair color in embryos, there was only 40% and 31% support, respectively. There was a similar result in a study at the University of Bogota, Colombia, where students as well as professors generally agreed that therapeutic genome editing is acceptable, while non-therapeutic genome editing is not.

There is also debate on if there can be a defined distinction between therapeutic and non-therapeutic germline editing. An example would be if two embryos are predicted to grow up to be very short in height. Boy 1 will be short because of a mutation in his Human Growth Hormone gene, while boy 2 will be short because his parents are very short. Editing the embryo of boy 1 to make him of average height would be a therapeutic germline edit, while editing the embryo of boy 2 to be of average height would be a non-therapeutic germline edit. In both cases with no editing of the boys' genomes they would both grow up to be very short, which would decrease their wellbeing in life. Likewise editing both of the boys' genomes would allow them to grow up to be of average height. In this scenario, editing for the same phenotype for being of average height falls under both therapeutic and non-therapeutic germline engineering.

Current global policy

There is distinction in some country policies, including but not limited to official regulation and legislation, between human germline engineering for reproductive use and for laboratory research. As of October 2020, there are 96 countries that have policies involving the use of germline engineering in human cells.

Reproductive use

Reproductive use of human germline engineering involves implanting the edited embryo to be born. 70 countries currently explicitly prohibit the use of human germline engineering for use in reproduction, while 5 countries prohibit it for reproduction with exceptions. No countries permit the use of human germline engineering for reproduction.

Countries that explicitly prohibit any use of human germline engineering for reproduction are: Albania, Argentina, Australia, Austria, Bahrain, Belarus, Benin, Bosnia and Herzegovina, Brazil, Bulgaria, Burundi, Canada, Chile, China, Congo, Costa Rica, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, India, Iran, Ireland, Israel, Japan, Kenya, Latvia, Lebanon, Lithuania, Malaysia, Malta, Mexico, Moldova, Montenegro, Netherlands, New Zealand, Nigeria, North Macedonia, Norway, Oman, Pakistan, Poland, Portugal, Qatar, Romania, Russia, San Marino, Saudi Arabia, Serbia, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, Thailand, Tunisia, Turkey, the United Kingdom, the United States, Uruguay, and the Vatican

Countries that explicitly prohibit (with exceptions) the use of human germline engineering for reproduction are: Belgium, Colombia, Italy, Panama, and the United Arab Emirates

Laboratory research

Laboratory research use involves human germline engineering restricted to in vitro use, where edited cells will not be implanted to be born. 19 countries currently explicitly prohibit any use of human germline engineering for in vitro use, while 4 prohibit it with exceptions, and 11 permit it.

Countries that explicitly prohibit any use of germline engineering for in vitro use are: Albania, Austria, Bahrain, Belarus, Brazil, Canada, Costa Rica, Croatia, Germany, Greece, Lebanon, Malaysia, Malta, Pakistan, Saudi Arabia, Sweden, Switzerland, Uruguay, and the Vatican

Countries that explicitly prohibit (with exceptions) the use of germline engineering for in vitro use are: Colombia, Finland, Italy, and Panama

Countries that explicitly permit the use of germline engineering for in vitro use are: Burundi, China, Congo, India, Iran, Ireland, Japan, Norway, Thailand, the United Kingdom, and the United States

See also

References

  1. ^ McGee, Andrew (2019-10-15). "Using the therapy and enhancement distinction in law and policy". Bioethics. 34 (1): 70–80. doi:10.1111/bioe.12662. ISSN 0269-9702. PMID 31617223. S2CID 204738693.
  2. ^ Caro-Romero, Henry David (2020-06-09). "Edición genómica heredable: un estudio exploratorio desde la perspectiva del principio bioético de la beneficencia". Revista Colombiana de Bioética. 15 (1). doi:10.18270/rcb.v15i1.2732. ISSN 2590-9452. S2CID 225804689.
  3. ^ Baylis, Françoise; Darnovsky, Marcy; Hasson, Katie; Krahn, Timothy M. (2020-10-01). "Human Germline and Heritable Genome Editing: The Global Policy Landscape". The CRISPR Journal. 3 (5): 365–377. doi:10.1089/crispr.2020.0082. ISSN 2573-1599. PMID 33095042. S2CID 225053656.
  4. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JC, Amato P, Kim JS, Kaul S, Mitalipov S (August 2017). "Correction of a pathogenic gene mutation in human embryos". Nature. 548 (7668): 413–419. Bibcode:2017Natur.548..413M. doi:10.1038/nature23305. PMID 28783728. (This paper currently has an expression of concern, see doi:10.1038/nature23305, PMID 28783728,  Retraction Watch. If this is an intentional citation to a such a paper, please replace {{expression of concern|...}} with {{expression of concern|...|intentional=yes}}.)
  5. Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, et al. (August 2017). "Human Germline Genome Editing". American Journal of Human Genetics. 101 (2): 167–176. doi:10.1016/j.ajhg.2017.06.012. PMC 5544380. PMID 28777929.
  6. Rodríguez-Rodríguez, Diana Raquel; Ramírez-Solís, Ramiro; Garza-Elizondo, Mario Alberto; Garza-Rodríguez, María De Lourdes; Barrera-Saldaña, Hugo Alberto (April 2019). "Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review)". International Journal of Molecular Medicine. 43 (4): 1559–1574. doi:10.3892/ijmm.2019.4112. ISSN 1791-244X. PMC 6414166. PMID 30816503.
  7. Cyranoski, David; Reardon, Sara (22 April 2015). "Chinese scientists genetically modify human embryos". Nature: nature.2015.17378. doi:10.1038/nature.2015.17378. S2CID 87604469.
  8. ^ National Academies of Sciences, Engineering, and Medicine. 2017. Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press. doi: 10.17226/24623.
  9. Lock M, Nichter M (2003-09-02). New Horizons in Medical Anthropology: Essays in Honour of Charles Leslie. Routledge. ISBN 9781134471287.
  10. Li, Ruiqiang; Zeng, Wu; Ma, Miao; Wei, Zixuan; Liu, Hongbo; Liu, Xiaofeng; Wang, Min; Shi, Xuan; Zeng, Jianhua; Yang, Linfang; Mo, Delin; Liu, Xiaohong; Chen, Yaosheng; He, Zuyong (February 2020). "Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs". Transgenic Research. 29 (1): 149–163. doi:10.1007/s11248-020-00188-w. ISSN 0962-8819. PMID 31927726. S2CID 255111445.
  11. Professor, Apostolos Stergioulas, Ph D. (2021-02-04). "Gene doping in modern sport". Journal Biology of Exercise. 5. doi:10.4127/jbe.2009.0021. Retrieved 2022-12-06.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Gonzalez-Cadavid, Nestor F.; Taylor, Wayne E.; Yarasheski, Kevin; Sinha-Hikim, Indrani; Ma, Kun; Ezzat, Shereen; Shen, Ruoqing; Lalani, Rukhsana; Asa, Sylvia; Mamita, Mohamad; Nair, Gouri; Arver, Stefan; Bhasin, Shalender (1998-12-08). "Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting". Proceedings of the National Academy of Sciences. 95 (25): 14938–14943. Bibcode:1998PNAS...9514938G. doi:10.1073/pnas.95.25.14938. ISSN 0027-8424. PMC 24554. PMID 9843994.
  13. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (March 2015). "Don't edit the human germ line". Nature. 519 (7544): 410–1. Bibcode:2015Natur.519..410L. doi:10.1038/519410a. PMID 25810189.
  14. Cohen IG, Adashi EY (August 2016). "SCIENCE AND REGULATION. The FDA is prohibited from going germline". Science. 353 (6299): 545–6. Bibcode:2016Sci...353..545C. doi:10.1126/science.aag2960. PMID 27493171. S2CID 206651381.
  15. Wang, Tim; et al. (2014). "Genetic screens in human cells using the CRISPR-Cas9 system". Science. 343 (6166): 80–4. Bibcode:2014Sci...343...80W. doi:10.1126/science.1246981. PMC 3972032. PMID 24336569.
  16. "On Human Gene Editing: International Summit Statement". www8.nationalacademies.org. Retrieved 2019-04-18.
  17. "Germline gene-editing research needs rules". Nature. 567 (7747): 145. March 2019. Bibcode:2019Natur.567..145.. doi:10.1038/d41586-019-00788-5. PMID 30867612.
  18. "WHO | Gene editing". WHO. Archived from the original on February 22, 2019. Retrieved 2019-04-18.
  19. Greely, Henry T (2019). "CRISPR'd babies: human germline genome editing in the 'He Jiankui affair'". Journal of Law and the Biosciences. 6 (1): 111–183. doi:10.1093/jlb/lsz010. PMC 6813942. PMID 31666967.
  20. Cyranoski, David (22 January 2019). "CRISPR-Baby Scientist Fired by University". Nature. doi:10.1038/d41586-019-00246-2. S2CID 159097706. Archived from the original on 25 June 2023. Retrieved 9 January 2020.
  21. Cyranoski, David; Ledford, Heidi (26 November 2018). "Genome-edited baby claim provokes international outcry". Nature. 563 (7733): 607–608. Bibcode:2018Natur.563..607C. doi:10.1038/d41586-018-07545-0. PMID 30482929. S2CID 53768039.
  22. "Scientist He Jiankui Among TIME'S 100 Most Influential". CodeBlue. 19 April 2019. Archived from the original on 4 July 2022. Retrieved 27 March 2022.
  23. ^ "China Orders Investigation After Scientist Claims First Gene-Edited Babies". The New York Times. Reuters. 26 November 2018. Archived from the original on 27 November 2018. Retrieved 26 November 2018.
  24. Regalado, Antonio (25 November 2018). "Chinese scientists are creating CRISPR babies". MIT Technology Review. Archived from the original on 27 November 2018. Retrieved 26 November 2018.
  25. Bulluck, Pam (14 April 2019). "Gene-Edited Babies: What a Chinese Scientist Told an American Mentor". The New York Times. Archived from the original on 14 April 2019. Retrieved 14 April 2019.
  26. Begley, Sharon; Joseph, Andrew (17 December 2018). "The CRISPR Shocker: How Genome-Editing Scientist He Jiankui Rose from Obscurity to Stun the World". Stat News. Archived from the original on 17 December 2018. Retrieved 17 December 2018.
  27. Begley, Sharon (26 November 2018). "Claim of CRISPR'd baby girls stuns genome editing summit". Stat News. Archived from the original on 27 November 2018. Retrieved 26 November 2018.
  28. Gutierrez C., Nicolas (29 June 2022). "What's next for the gene-edited children from CRISPR trial in China?". New Scientist. Archived from the original on 9 January 2023. Retrieved 9 January 2023.
  29. Begley, Sharon (28 November 2018). "Amid Uproar, Chinese Scientist Defends Creating Gene-Edited Babies". STAT. Archived from the original on 31 January 2019. Retrieved 28 November 2018.
  30. Kolata, Gina; Belluck, Pam (5 December 2018). "Why Are Scientists So Upset About the First Crispr Babies? - Only because a rogue researcher defied myriad scientific and ethical norms and guidelines. We break it down". The New York Times. Archived from the original on 30 January 2019. Retrieved 5 December 2018.
  31. The Editorial Board (28 January 2019). "Should Scientists Toy With the Secret to Life? - The gene-editing technology Crispr has the power to remake life as we know it. Questions about how to use it concern everyone". The New York Times. Retrieved 29 January 2019.
  32. Regalado, Antonio (25 November 2018). "Exclusive: Chinese scientists are creating CRISPR babies - A daring effort is under way to create the first children whose DNA has been tailored using gene editing". MIT Technology Review. Archived from the original on 27 November 2018. Retrieved 26 November 2018.
  33. Cyranoski, David (27 November 2018). "How the genome-edited babies revelation will affect research - Some scientists worry the startling claim will lead to knee-jerk regulations and damage the public's trust in gene editing". Nature. doi:10.1038/d41586-018-07559-8. S2CID 158314199. Archived from the original on 27 November 2018. Retrieved 27 November 2018.
  34. Jiang, Steven; Regan, Helen; Berlinger, Joshua (29 November 2018). "China suspends scientists who claim to have produced first gene-edited babies". CNN News. Archived from the original on 29 November 2018. Retrieved 29 November 2018.
  35. Yee, Isaac; Hollingsworth, Julia (30 December 2019). "Chinese gene-editing scientist jailed for 3 years". CNN News. Archived from the original on 30 December 2019. Retrieved 30 December 2019.
  36. ""基因编辑婴儿"案贺建奎已释放,曾获刑三年". finance.sina.com.cn. 2022-04-07. Retrieved 2024-09-20.
  37. "China convicts 3 researchers involved in gene-edited babies". AP NEWS. 20 April 2021. Archived from the original on 27 March 2022. Retrieved 27 March 2022.
  38. Cohen, Jon (2 August 2019). "Inside the circle of trust". Science. 365 (6452): 430–437. Bibcode:2019Sci...365..430C. doi:10.1126/science.365.6452.430. PMID 31371593.
  39. Yan, Sophia (28 November 2018). "China's 'Dr Frankenstein' says second woman in early pregnancy with gene-edited babies". The Telegraph. Archived from the original on 3 April 2020. Retrieved 10 January 2020.
  40. Low, Zoe (27 November 2018). "China's gene editing Frankenstein had dreams of being Chinese Einstein". South China Morning Post. Archived from the original on 10 January 2020. Retrieved 10 January 2020.
  41. Marx, Vivien (24 November 2021). "The CRISPR children". Nature Biotechnology. 39 (12): 1486–1490. doi:10.1038/s41587-021-01138-5. PMID 34819659. S2CID 244653054. Archived from the original on 22 December 2021. Retrieved 13 January 2022.
  42. Cyranoski, David (20 May 2019). "China set to introduce gene-editing regulation following CRISPR-baby furore - The draft rules mean that anyone who manipulates human genes in adults or embryos is responsible for adverse outcomes". Nature. doi:10.1038/d41586-019-01580-1. PMID 32424191. S2CID 182604140. Archived from the original on 20 May 2019. Retrieved 20 May 2019.
  43. Song, Lingqiao; Joly, Yann (2021). "After He Jianku: China's biotechnology regulation reforms". Medical Law International. 21 (2): 174–192. doi:10.1177/0968533221993504. S2CID 235473692.
  44. "中华人民共和国刑法修正案(十一)_滚动新闻_中国政府网". www.gov.cn. Archived from the original on 31 May 2023. Retrieved 2024-09-20.
  45. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (May 2015). "CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes". Protein & Cell. 6 (5): 363–372. doi:10.1007/s13238-015-0153-5. PMC 4417674. PMID 25894090.
  46. Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J (June 2017). "CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein". Molecular Genetics and Genomics. 292 (3): 525–533. doi:10.1007/s00438-017-1299-z. PMID 28251317. S2CID 16358211.
  47. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. (August 2017). "Correction of a pathogenic gene mutation in human embryos". Nature. 548 (7668): 413–419. Bibcode:2017Natur.548..413M. doi:10.1038/nature23305. PMID 28783728. (This paper currently has an expression of concern, see doi:10.1038/nature23305, PMID 28783728,  Retraction Watch. If this is an intentional citation to a such a paper, please replace {{expression of concern|...}} with {{expression of concern|...|intentional=yes}}.)
  48. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (July 2018). "CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response". Nature Medicine. 24 (7): 927–930. doi:10.1038/s41591-018-0049-z. hdl:10138/303675. PMID 29892067. S2CID 47018050.
  49. Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J, Huang X (November 2018). "Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos". Molecular Therapy. 26 (11): 2631–2637. doi:10.1016/j.ymthe.2018.08.007. PMC 6224777. PMID 30166242.
  50. The Declaration of Inuyama: Human Genome Mapping, Genetic Screening and Gene Therapy. cioms.ch
  51. Smith KR, Chan S, Harris J (October 2012). "Human germline genetic modification: scientific and bioethical perspectives". Archives of Medical Research. 43 (7): 491–513. doi:10.1016/j.arcmed.2012.09.003. PMID 23072719.
  52. Reardon, Sara (14 February 2017). "US science advisers outline path to genetically modified babies". Nature: nature.2017.21474. doi:10.1038/nature.2017.21474.
  53. Wade N (19 March 2015). "Scientists Seek Ban on Method of Editing the Human Genome". The New York Times. Retrieved 20 March 2015. The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use.
  54. Kolata G (23 April 2015). "Chinese Scientists Edit Genes of Human Embryos, Raising Concerns". The New York Times. Retrieved 24 April 2015.
  55. Harmon A (2017-02-14). "Human Gene Editing Receives Science Panel's Support". The New York Times. ISSN 0362-4331. Retrieved 2017-02-17.
  56. Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations. "Human Genome Editing: Science, Ethics, and Governance". nationalacademies.org. National Academy of Sciences; National Academy of Medicine. Retrieved 21 February 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  57. "Scientists OK genetically engineering babies". New York Post. Reuters. 2017-02-14. Retrieved 2017-02-17.
  58. "Ethical issues related to prenatal genetic testing. The Council on Ethical and Judicial Affairs, American Medical Association". Archives of Family Medicine. 3 (7): 633–642. July 1994. doi:10.1001/archfami.3.7.633. PMID 7921302.
  59. Cole-Turner, Ronald (2008). Design and Destiny: Jewish and Christian Perspectives on Human Germline Modification. MIT Press. p. 7. ISBN 9780262533010.
  60. Powell R, Buchanan A (February 2011). "Breaking evolution's chains: the prospect of deliberate genetic modification in humans". The Journal of Medicine and Philosophy. 36 (1): 6–27. doi:10.1093/jmp/jhq057. PMID 21228084.
  61. Baylis F, Robert JS (2004). "The inevitability of genetic enhancement technologies". Bioethics. 18 (1): 1–26. doi:10.1111/j.1467-8519.2004.00376.x. PMID 15168695.
  62. Evans J (2002). Playing God?: Human Genetic Engineering and the Rationalization of Public Bioethical Debate. University of Chicago Press. ISBN 978-0-226-22262-2.
  63. "Center for Health Ethics - MU School of Medicine". medicine.missouri.edu. 25 April 2013. Archived from the original on 3 December 2013. Retrieved 2024-11-23.
  64. Roco MC, Bainbridge WS (2002). "Converging Technologies for Improving Human Performance: Integrating From the Nanoscale". Journal of Nanoparticle Research. 4 (4): 281–295. Bibcode:2002JNR.....4..281R. doi:10.1023/A:1021152023349. S2CID 136290217.
  65. Allhoff, Fritz (2005). "Germ-Line Genetic Enhancement and Rawlsian Primary Goods". Kennedy Institute of Ethics Journal. 15 (1): 39–56. CiteSeerX 10.1.1.566.171. doi:10.1353/ken.2005.0007. PMID 15881795. S2CID 14432440.
  66. ^ Ishii T (August 2014). "Potential impact of human mitochondrial replacement on global policy regarding germline gene modification". Reproductive Biomedicine Online. 29 (2): 150–5. doi:10.1016/j.rbmo.2014.04.001. hdl:2115/56864. PMID 24832374.
  67. Ranisch, Robert (2 December 2017). "Germline Genome Editing and the Functions of Consent". The American Journal of Bioethics. 17 (12): 27–29. doi:10.1080/15265161.2017.1388875. PMID 29148947. S2CID 10117287.
  68. Vassena, R.; Heindryckx, B.; Peco, R.; Pennings, G.; Raya, A.; Sermon, K.; Veiga, A. (June 2016). "Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells". Human Reproduction Update. 22 (4): 411–419. doi:10.1093/humupd/dmw005. PMID 26932460.
  69. Pearce, David (2017). "The Reproductive Revolution". In Vinding, Magnus (ed.). Can Biotechnology Abolish Suffering?. ASIN B075MV9KS2.
  70. Savulescu, Julian (October 2001). "Procreative Beneficence: Why We Should Select the Best Children". Bioethics. 15 (5–6): 413–426. doi:10.1111/1467-8519.00251. PMID 12058767.
  71. Veit, Walter (2018). "Procreative Beneficence and Genetic Enhancement" (PDF). KRITERION - Journal of Philosophy. 32: 75–92. doi:10.1515/krt-2018-320105. S2CID 149244361. Archived from the original (PDF) on October 23, 2021.
  72. Daws, Steven (6 October 2017). "Procreative Beneficence in the CRISPR World". Voices in Bioethics. 3. doi:10.7916/vib.v3i.6031.
  73. Stock, Gregory (2003). Redesigning Humans: Choosing Our Genes, Changing Our Future. Houghton Mifflin Harcourt. ISBN 978-0618340835.
  74. Wivel, Nelson A.; Walters, LeRoy (22 October 1993). "Germ-Line Gene Modification and Disease Prevention: Some Medical and Ethical Perspectives". Science. 262 (5133): 533–538. Bibcode:1993Sci...262..533W. doi:10.1126/science.8211180. PMID 8211180. Gale A14296431 ProQuest 213545041.
  75. Darnovsky, Marcy (July 2013). "A slippery slope to human germline modification". Nature. 499 (7457): 127. Bibcode:2013Natur.499..127D. doi:10.1038/499127a. PMID 23846625. S2CID 4430248. ProQuest 1415758114.
  76. Alanis-Lobato, Gregorio; Zohren, Jasmin; McCarthy, Afshan; Fogarty, Norah M. E.; Kubikova, Nada; Hardman, Emily; Greco, Maria; Wells, Dagan; Turner, James M. A.; Niakan, Kathy K. (June 2021). "Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos". Proceedings of the National Academy of Sciences. 118 (22): e2004832117. Bibcode:2021PNAS..11804832A. doi:10.1073/pnas.2004832117. ISSN 0027-8424. PMC 8179174. PMID 34050011.
  77. Johnson, Tess (3 December 2019). "Human genetic enhancement might soon be possible – but where do we draw the line?". The Conversation.
  78. Newson, Ainsley; Wrigley, Anthony (2016). "Being human: The ethics, law, and scientific progress of genome editing". AQ - Australian Quarterly. 87 (1): 3–8. Gale A441491350 ProQuest 2046113711.
  79. Greene, Marsha; Master, Zubin (2018-09-01). "Ethical Issues of Using CRISPR Technologies for Research on Military Enhancement". Journal of Bioethical Inquiry. 15 (3): 327–335. doi:10.1007/s11673-018-9865-6. ISSN 1872-4353. PMID 29968018. S2CID 49640190.

Further reading

Categories: