Misplaced Pages

Photon: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 06:46, 30 April 2019 editDVdm (talk | contribs)Autopatrolled, Extended confirmed users, New page reviewers, Pending changes reviewers, Rollbackers138,467 edits Undid revision 894819846 by Somebody356 (talk) Error. Photon's don't have a rest frame, so no rest massTag: Undo← Previous edit Latest revision as of 19:41, 19 December 2024 edit undoJohnjbarton (talk | contribs)Extended confirmed users12,094 edits Nomenclature: the quote the actual says. 
(559 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{short description|Particle of light}} {{short description|Elementary particle or quantum of light}}
{{About|the elementary particle of light}} {{About|the elementary particle or quantum of light}}
{{Infobox Particle {{Infobox particle
|bgcolour= |bgcolour =
|name=Photon |name = Photon
|num_types= |num_types =
|composition=] |composition = ]
|statistics=] |statistics = ]
|group=] |group = ]
|generation= |generation =
|interaction=], ], ] |interaction = ], ] (and ])
|theorized=] (1905) <br> The name of "photon" is generally attributed to ] (1926) |theorized = ] (1905) <br/> The name "photon" is generally attributed to ] (1926)
|discovered= |discovered =
|symbol=γ |symbol={{big| γ}}
|mass={{nowrap|0 (theoretical value)}}<br/>
|mass=0
{{nowrap|&lt; {{val|1|e=-18|ul=eV/c2}} (experimental limit)}}<ref name="Particle_table_2009">{{cite journal
<br>{{nowrap|&lt; {{val|1|e=-18|ul=eV/c2}} }}<ref name="Particle_table_2009"> {{cite journal |last=Amsler |first=C. |display-authors=etal |collaboration=] |year=2008 |url=http://pdg.lbl.gov/2009/tables/rpp2009-sum-gauge-higgs-bosons.pdf |title=Review of Particle Physics: Gauge and Higgs bosons |journal=] |volume=667 |issue=1 |page=1 |bibcode=2008PhLB..667....1A |doi=10.1016/j.physletb.2008.07.018 }}</ref>
|last1 = Amsler
|mean_lifetime=Stable<ref name="Particle_table_2009"/>
|first1 = C.
|decay_particle=
|display-authors = etal
|electric_charge=0
|collaboration = ]
<br>{{nowrap|&lt; {{val|1|e=-35|ul=e}}}}<ref name="Particle_table_2009"/>
|year = 2008
|color_charge=
|title = Review of Particle Physics: Gauge and Higgs bosons
|spin=1
|journal = ]
|num_spin_states=
|volume = 667
|parity=−1<ref name="Particle_table_2009"/>
|issue = 1
|g_parity=
|page = 1
|c_parity=−1<ref name="Particle_table_2009"/>
|bibcode = 2008PhLB..667....1A
|r_parity=
|doi = 10.1016/j.physletb.2008.07.018
|condensed_symmetries='']''('']''<sup>''] ]''</sup>)=0,1(1<sup>−−</sup>)<ref name="Particle_table_2009"/>
|hdl = 1854/LU-685594
|s2cid = 227119789
|hdl-access = free
|url = http://pdg.lbl.gov/2009/tables/rpp2009-sum-gauge-higgs-bosons.pdf
|access-date = 2010-04-09
|archive-date = 2018-12-25
|archive-url = https://web.archive.org/web/20181225235527/http://pdg.lbl.gov/2009/tables/rpp2009-sum-gauge-higgs-bosons.pdf%0A
|url-status = live
}}</ref>
|mean_lifetime = Stable<ref name="Particle_table_2009"/>
|decay_particle =
|electric_charge = 0
<br/>{{nowrap|&lt; {{val|1|e=-35|ul=e}}}}<ref name="Particle_table_2009"/>
|color_charge = No
|spin = 1&nbsp;]
|num_spin_states = +1&nbsp;''ħ'',&nbsp; −1&nbsp;''ħ''
|parity = −1<ref name="Particle_table_2009"/>
|g_parity =
|c_parity = −1<ref name="Particle_table_2009"/>
|r_parity =
|condensed_symmetries='']''('']''<sup>''] ]''</sup>)=0,1(1<sup>−−</sup>)<ref name="Particle_table_2009"/>
}} }}


The '''photon''' is a type of ], the ] of the ] including ] such as ], and the ] for the ] (even when ] via ]s). The photon has zero ] and always moves at the ] within a ]. A '''photon''' ({{etymology|grc|''{{wikt-lang|grc|φῶς}}'', ''{{wikt-lang|grc|φωτός}}'' ({{grc-transl|φῶς, φωτός}})|light}}) is an ] that is a ] of the ], including ] such as ] and ]s, and the ] for the ]. Photons are ]s that can move no faster than the ] measured in vacuum. The photon belongs to the class of ] particles.

Like all elementary particles, photons are currently best explained by ] and exhibit ], exhibiting properties of both ]s and ]. For example, a single photon may be ] by a ] and exhibit ] with itself, and it can behave as a particle with definite and finite measurable position or ], though not both at the same time as per ]. The photon's wave and quantum qualities are two observable aspects of a single phenomenon—they cannot be described by any mechanical model;<ref> {{cite book |last1=Joos |first1=George |date=1951 |title=Theoretical Physics |page=679 |publisher=Blackie and Son Limited |location=London and Glasgow }}</ref> a representation of this dual property of light that assumes certain points on the wavefront to be the seat of the energy is not possible. The quanta in a light wave are not spatially localized.


As with other elementary particles, photons are best explained by ] and exhibit ], their behavior featuring properties of both ]s and ]s.<ref>{{cite book |last1=Joos |first1=George |date=1951 |title=Theoretical Physics |page=679 |publisher=Blackie and Son Limited |location=London and Glasgow }}</ref> The modern photon concept originated during the first two decades of the 20th century with the work of ], who built upon the research of ]. While Planck was trying to explain how ] and electromagnetic radiation could be in ] with one another, he proposed that the energy stored within a ] object should be regarded as composed of an ] number of discrete, equal-sized parts. To explain the ], Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, ] popularized the term ''photon'' for these energy units.<ref name="www.aps.org">{{Cite web|url=https://www.aps.org/publications/apsnews/201212/physicshistory.cfm|title=December 18, 1926: Gilbert Lewis coins "photon" in letter to Nature|website=www.aps.org|language=en|access-date=2019-03-09|archive-date=2019-05-02|archive-url=https://web.archive.org/web/20190502171300/https://www.aps.org/publications/apsnews/201212/physicshistory.cfm|url-status=live}}</ref><ref>{{Cite web|url=https://www.atomicheritage.org/profile/gilbert-n-lewis|title=Gilbert N. Lewis|website=Atomic Heritage Foundation|language=en|access-date=2019-03-09|archive-date=2015-04-16|archive-url=https://web.archive.org/web/20150416123637/https://www.atomicheritage.org/profile/gilbert-n-lewis|url-status=live}}</ref><ref name="kragh">{{Cite arXiv |last=Kragh |first=Helge |date=2014 |title=Photon: New light on an old name |eprint=1401.0293 |class=physics.hist-ph }}</ref> Subsequently, many other experiments validated Einstein's approach.<ref name="compton-lecture">{{cite book|last1=Compton|first1=Arthur H.|title=From Nobel Lectures, Physics 1922–1941|publisher=Elsevier Publishing Company|year=1965|location=Amsterdam|chapter=X-rays as a branch of optics|orig-year=12 Dec 1927|chapter-url=https://www.nobelprize.org/uploads/2018/06/compton-lecture.pdf|access-date=3 January 2019|archive-date=12 May 2024|archive-url=https://web.archive.org/web/20240512231537/https://www.nobelprize.org/uploads/2018/06/compton-lecture.pdf|url-status=live}}</ref><ref>{{Cite journal|last1=Kimble|first1=H.J.|last2=Dagenais|first2=M.|last3=Mandel|first3=L.|year=1977|title=Photon Anti-bunching in Resonance Fluorescence|url=https://authors.library.caltech.edu/6051/1/KIMprl77.pdf|journal=]|volume=39|issue=11|pages=691–695|bibcode=1977PhRvL..39..691K|doi=10.1103/PhysRevLett.39.691|access-date=2019-01-03|archive-date=2020-11-25|archive-url=https://web.archive.org/web/20201125123348/https://authors.library.caltech.edu/6051/1/KIMprl77.pdf|url-status=live}}</ref><ref>{{cite journal|last1=Grangier|first1=P.|last2=Roger|first2=G.|last3=Aspect|first3=A.|year=1986|title=Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences|journal=]|volume=1|issue=4|pages=173–179|bibcode=1986EL......1..173G|citeseerx=10.1.1.178.4356|doi=10.1209/0295-5075/1/4/004|s2cid=250837011 }}</ref>
The modern concept of the photon was developed gradually by ] in the early 20th century to explain experimental observations that did not fit the classical ] of light. The benefit of the photon model is that it accounts for the frequency dependence of light's energy, and explains the ability of ] and electromagnetic radiation to be in ]. The photon model accounts for anomalous observations, including the properties of ], that others (notably ]) had tried to explain using ''semiclassical models''. In that model, light is described by ], but material objects emit and absorb light in ''quantized'' amounts (i.e., they change energy only by certain particular discrete amounts). Although these semiclassical models contributed to the development of quantum mechanics, many further experiments<ref>{{Cite journal |last=Kimble |first=H.J. |last2=Dagenais |first2=M. |last3=Mandel |first3=L. |year=1977 |title=Photon Anti-bunching in Resonance Fluorescence |url=https://authors.library.caltech.edu/6051/1/KIMprl77.pdf |journal=] |volume=39 |issue=11 |pages=691–695 |bibcode=1977PhRvL..39..691K |doi=10.1103/PhysRevLett.39.691 }}</ref><ref> {{cite journal |last1=Grangier |first1=P. |last2=Roger |first2=G. |last3=Aspect |first3=A. |year=1986 |title=Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences |journal=] |volume=1 |issue=4 |pages=173–179 |bibcode=1986EL......1..173G |citeseerx=10.1.1.178.4356 |doi=10.1209/0295-5075/1/4/004 }}</ref> beginning with the phenomenon of ] of single photons by electrons, validated Einstein's hypothesis that ''light itself'' is ].<ref name="compton-lecture">{{cite book |last1=Compton |first1=Arthur H. |chapter=X-rays as a branch of optics |url=https://www.nobelprize.org/uploads/2018/06/compton-lecture.pdf |orig-year=12 Dec 1927 |title=From Nobel Lectures, Physics 1922-1941 |publisher=Elsevier Publishing Company |location=Amsterdam |year=1965}}</ref> In December 1926, American ] ] coined the widely-adopted name "photon" for these particles in a letter to '']''.<ref name=":0">{{Cite web|url=https://www.aps.org/publications/apsnews/201212/physicshistory.cfm|title=December 18, 1926: Gilbert Lewis coins “photon” in letter to Nature|website=www.aps.org|language=en|access-date=2019-03-09}}</ref><ref>{{Cite web|url=https://www.atomicheritage.org/profile/gilbert-n-lewis|title=Gilbert N. Lewis|website=Atomic Heritage Foundation|language=en|access-date=2019-03-09}}</ref><ref name="kragh">{{Cite arxiv |last=Kragh |first=Helge |date=2014 |title=Photon: New light on an old name |eprint=1401.0293 |class=physics.hist-ph }}</ref> After Arthur H. Compton won the Nobel Prize in 1927 for his scattering studies,<ref>"Arthur H. Compton – Facts". Nobelprize.org. Nobel Media AB 2014. Web. 4 Mar 2017. <http://www.nobelprize.org/nobel_prizes/physics/laureates/1927/compton-facts.html></ref> most scientists accepted that light quanta have an independent existence, and the term "photon" was accepted.


In the ] of ], photons and other elementary particles are described as a necessary consequence of physical laws having a certain ] at every point in ]. The intrinsic properties of particles, such as ], ], and ], are determined by this ]. The photon concept has led to momentous advances in experimental and theoretical physics, including ]s, ], ], and the ] of quantum mechanics. It has been applied to ], ], and ]. Recently, photons have been studied as elements of ]s, and for applications in ] and ] such as ]. In the ] of ], photons and other elementary particles are described as a necessary consequence of physical laws having a certain ] at every point in ]. The intrinsic properties of particles, such as ], ], and ], are determined by ]. The photon concept has led to momentous advances in experimental and theoretical physics, including ]s, ], ], and the ] of quantum mechanics. It has been applied to ], ], and ]. Moreover, photons have been studied as elements of ]s, and for applications in ] and ] such as ].


==Nomenclature== ==Nomenclature==
]: the emission of electrons from a metal plate caused by light quanta – photons]]
The word ] (singular ''quantum,'' Latin for '']'') was used before 1900 to mean particles or amounts of different ], including ]. In 1900, the German physicist ] was studying black-body radiation, and specifically the ]: he suggested that the experimental observations would be explained if the energy carried by electromagnetic ]s could only be released in "packets" of energy. In his 1901 article <ref name="Planck1901"/> in '']'' he called these packets "energy elements". In 1905, ] published a paper in which he proposed that many light-related phenomena—including black-body radiation and the ]—would be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete wave-packets.<ref name="Einstein1905">{{cite journal |last=Einstein |first=A. |authorlink=Albert Einstein |year=1905 |title=Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt |url=http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_132-148.pdf |journal=] |volume=17 |pages=132–148 |doi=10.1002/andp.19053220607 |bibcode=1905AnP...322..132E |issue=6 |language=de}}. An ] is available from ].</ref> He called such a wave-packet ''the light quantum'' (German: ''das Lichtquant'').{{efn|Although the 1967 of Planck's Nobel Lecture interprets Planck's ''Lichtquant'' as "photon", the more literal 1922 translation by Hans Thacher Clarke and Ludwik Silberstein {{cite book |first=Max |last=Planck |title=The Origin and Development of the Quantum Theory |url={{google books |plainurl=y |id=4UC4AAAAIAAJ}} |year=1922 |publisher=Clarendon Press}} () uses "light-quantum". No evidence is known that Planck himself used the term "photon" by 1926 ().}}
] letter which brought the word &quot;photon&quot; into common usage]]
The word ] (singular ''quantum,'' Latin for '']'') was used before 1900 to mean particles or amounts of different ], including ]. In 1900, the German physicist ] was studying ], and he suggested that the experimental observations, specifically at ], would be explained if the energy was "made up of a completely determinate number of finite equal parts", which he called "energy elements".<ref>{{cite journal|last=Kragh |first=Helge |author-link=Helge Kragh |title=Max Planck: the reluctant revolutionary |journal=] |date=2000-12-01 |volume=13 |number=12 |pages=31–36 |doi=10.1088/2058-7058/13/12/34}}</ref> In 1905, ] published a paper in which he proposed that many light-related phenomena—including black-body radiation and the ]—would be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete energy quanta.<ref name="Einstein1905">{{Cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1905 |title=Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt |url=http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_132-148.pdf |url-status=live |journal=] |language=de |volume=17 |issue=6 |pages=132–148 |bibcode=1905AnP...322..132E |doi=10.1002/andp.19053220607 |archive-url=https://web.archive.org/web/20150924072915/http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_132-148.pdf |archive-date=2015-09-24 |access-date=2010-08-25 |quote=According to this picture, the energy of a light wave emitted from a point source is not spread continuously over ever larger volumes, but consists of a finite number of energy quanta that are spatially localized at points of space, move without dividing and are absorbed or generated only as a whole. |doi-access=free}} An ] is available from ].</ref> He called these ''a light quantum'' (German: ''ein Lichtquant'').{{efn|Although the 1967 of Planck's Nobel Lecture interprets Planck's ''Lichtquant'' as "photon", the more literal 1922 translation by Hans Thacher Clarke and Ludwik Silberstein {{cite book |first=Max |last=Planck |title=The Origin and Development of the Quantum Theory |year=1922 |publisher=Clarendon Press |section=via Google Books |section-url={{google books |plainurl=y |id=4UC4AAAAIAAJ}} |url=https://archive.org/details/origindevelopmen00planrich |via=Internet Archive (archive.org, 2007-03-01)}} uses "light-quantum". No evidence is known that Planck himself had used the term "photon" as of 1926 ().}}


The name ''photon'' derives from the ] for light, ''{{lang|grc|φῶς}}'' (transliterated ''phôs''). ] used ''photon'' in 1928, referring to ], who coined the term in a letter to '']'' on December 18, 1926.<ref name=":0" /><ref>"Discordances entre l'expérience et la théorie électromagnétique du rayonnement." In Électrons et Photons. Rapports et Discussions de Cinquième Conseil de Physique, edited by Institut International de Physique Solvay. Paris: Gauthier-Villars, pp. 55–85.</ref> In fact, the same name was used earlier but was never widely adopted before Lewis: in 1916 by the American physicist and psychologist ], in 1921 by the Irish physicist ], in 1924 by the French physiologist ] (1890–1993), and in 1926 by the French physicist ] (1891–1971).<ref name="kragh" /> The name was suggested initially as a unit related to the illumination of the eye and the resulting sensation of light and was used later in a physiological context. Although Wolfers's and Lewis's theories were contradicted by many experiments and never accepted, the new name was adopted very soon by most physicists after Compton used it.<ref name="kragh" />{{efn|] credits ] with defining quanta of energy as photons in 1923.<ref>{{cite book |first=Isaac |last=Asimov |title=The Neutrino: Ghost Particle of the Atom |url={{google books |plainurl=y |id=-SkMngEACAAJ}} |date=1983 |publisher=Avon Books |isbn=978-0-380-00483-6 |authorlink=Isaac Asimov |location=Garden City, NY}} and {{cite book |first=Isaac |last=Asimov |authorlink=Isaac Asimov |title=The Universe: From Flat Earth to Quasar |url={{google books |plainurl=y |id=Eo5xpO83YpoC}} |date=1971 |location=New York |publisher=] |isbn=978-0-8027-0316-3 |lccn=66022515}}</ref>}} The name ''photon'' derives from the ] for light, ''{{lang|grc|φῶς}}'' (transliterated ''phôs''). ] used ''photon'' in 1928, referring to ], who coined the term in a letter to '']'' on 18&nbsp;December 1926.<ref name="www.aps.org" /><ref>{{cite journal |last=Lewis |first=Gilbert N. |author-link=Gilbert N. Lewis |date=18 December 1926 |title=The conservation of photons |journal=Nature |volume=118 |issue=2981 |pages=874–875 |bibcode=1926Natur.118..874L |doi=10.1038/118874a0 |eissn=1476-4687 |s2cid=4110026}} ''see also''<br />
{{cite conference |date=24–29 October 1927 |others=l'Institut International de Physique Solvay (host institution) |title=Discordances entre l'expérience et la théorie électromagnétique du rayonnement |conference=Cinquième Conseil de Physique |publisher=Gauthier-Villars et Cie |publication-place=Paris, France |publication-date=1928 |pages=55–85 |place=Bruxelles, Belgium |book-title=Electrons et photons: Rapports et discussions du cinquième Conseil de Physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l'Institut International de Physique Solvay |lang=fr}}</ref> The same name was used earlier but was never widely adopted before Lewis: in 1916 by the American physicist and psychologist ], in 1921 by the Irish physicist ], in 1924 by the French physiologist René Wurmser (1890–1993), and in 1926 by the French physicist Frithiof Wolfers (1891–1971).<ref name="kragh"/> The name was suggested initially as a unit related to the illumination of the eye and the resulting sensation of light and was used later in a physiological context. Although Wolfers's and Lewis's theories were contradicted by many experiments and never accepted, the new name was adopted by most physicists very soon after Compton used it.<ref name="kragh"/>{{efn|]<ref name=Asimov-1971-1983/> credits ] with defining quanta of energy as photons in 1923.<ref name=Asimov-1971-1983>{{cite book |first=Isaac |last=Asimov |title=The Neutrino: Ghost particle of the atom |url={{google books |plainurl=y |id=-SkMngEACAAJ}} |date=1983 |publisher=Avon Books |isbn=978-0-380-00483-6 |author-link=Isaac Asimov |location=Garden City, NY}} and<br/>{{cite book |first=Isaac |last=Asimov |author-link=Isaac Asimov |title=The Universe: From flat Earth to quasar |url={{google books |plainurl=y |id=Eo5xpO83YpoC}} |date=1971 |location=New York |publisher=] |isbn=978-0-8027-0316-3 |lccn=66022515}}</ref>}}


In physics, a photon is usually denoted by the symbol ''γ'' (the ] ]). This symbol for the photon probably derives from ]s, which were discovered in 1900 by ],<ref>{{cite journal |last=Villard |first=P. |authorlink=Paul Ulrich Villard |year=1900 |title=Sur la réflexion et la réfraction des rayons cathodiques et des rayons déviables du radium |journal=] |volume=130 |pages=1010–1012 |language=fr}}</ref><ref>{{cite journal |last=Villard |first=P. |authorlink=Paul Ulrich Villard |year=1900 |title=Sur le rayonnement du radium |journal=] |volume=130 |pages=1178–1179 |language=fr}}</ref> named by ] in 1903, and shown to be a form of ] in 1914 by Rutherford and ].<ref>{{cite journal |last=Rutherford |first=E. |authorlink=Ernest Rutherford |author2=Andrade, E.N.C. |authorlink2=Edward Andrade |year=1914 |title=The Wavelength of the Soft Gamma Rays from Radium B |journal=] |volume=27 |issue=161 |pages=854–868 |doi=10.1080/14786440508635156}}</ref> In ] and ], photons are usually symbolized by '''', which is the ], where ''h'' is ] and the ] ''ν'' (]) is the photon's ].<ref name="Liddle2015">{{cite book |author=Andrew Liddle |title=An Introduction to Modern Cosmology |url=https://books.google.com/books?id=6n64CAAAQBAJ&pg=PA16 |date=2015 |publisher=John Wiley & Sons |isbn=978-1-118-69025-3 |page=16}}</ref> Much less commonly, the photon can be symbolized by ''hf'', where its frequency is denoted by ''f''. In physics, a photon is usually denoted by the symbol ] (the ] ]). This symbol for the photon probably derives from ]s, which were discovered in 1900 by ],<ref>{{cite journal |last=Villard |first=Paul Ulrich |author-link=Paul Ulrich Villard |year=1900 |title=Sur la réflexion et la réfraction des rayons cathodiques et des rayons déviables du radium |journal=] |language=fr |volume=130 |pages=1010–1012}}</ref><ref>{{cite journal |last=Villard |first=Paul Ulrich |author-link=Paul Ulrich Villard |year=1900 |title=Sur le rayonnement du radium |journal=] |language=fr |volume=130 |pages=1178–1179}}</ref> named by ] in 1903, and shown to be a form of ] in 1914 by Rutherford and ].<ref>{{cite journal |last1=Rutherford |first1=Ernest |author-link=Ernest Rutherford |last2=Andrade |first2=Edward N.C. |author-link2=Edward Andrade |year=1914 |title=The wavelength of the soft gamma rays from Radium B |url=https://zenodo.org/record/2278669 |journal=] |volume=27 |issue=161 |pages=854–868 |doi=10.1080/14786440508635156 |access-date=2019-08-25 |archive-date=2020-03-08 |archive-url=https://web.archive.org/web/20200308183926/https://zenodo.org/record/2278669 |url-status=live }}</ref> In ] and ], photons are usually symbolized by {{mvar|}}, which is the ], where {{mvar|h}} is the ] and the ] {{mvar|ν}} (]) is the photon's ].<ref name="Liddle2015">{{cite book |author=Liddle |first=Andrew |url=https://books.google.com/books?id=6n64CAAAQBAJ&pg=PA16 |title=An Introduction to Modern Cosmology |date=2015 |publisher=John Wiley & Sons |isbn=978-1-118-69025-3 |page=16 |language=en |access-date=2017-02-27 |archive-date=2024-05-13 |archive-url=https://web.archive.org/web/20240513012456/https://books.google.com/books?id=6n64CAAAQBAJ&pg=PA16#v=onepage&q&f=false |url-status=live }}</ref>


==Physical properties== ==Physical properties==
The photon has no ],<ref>{{cite book |last1=Frisch |first1=David H. |title=Elementary Particles |last2=Thorndike |first2=Alan M. |publisher=] |year=1964 |location=Princeton, New Jersey |page=22 |language=en-us |author1-link=David H. Frisch}}</ref><ref name="chargeless">{{cite journal |last1=Kobychev |first1=V. V. |last2=Popov |first2=S. B. |year=2005 |title=Constraints on the photon charge from observations of extragalactic sources |journal=] |volume=31 |issue=3 |pages=147–151 |arxiv=hep-ph/0411398 |bibcode=2005AstL...31..147K |doi=10.1134/1.1883345 |s2cid=119409823}}</ref> is generally considered to have zero ]<ref>{{cite web |first=John |last=Baez |author-link=John Baez |title=What is the mass of a photon? |publisher=] |type=pers. academic site |url=http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/photon_mass.html |access-date=2009-01-13 |archive-date=2014-05-31 |archive-url=https://web.archive.org/web/20140531100537/http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/photon_mass.html |url-status=live }}</ref> and is a ]. The experimental upper limit on the photon mass<ref>{{Cite journal |last1=Tu |first1=Liang-Cheng |last2=Luo |first2=Jun |last3=Gillies |first3=George T |date=2005-01-01 |title=The mass of the photon |url=https://iopscience.iop.org/article/10.1088/0034-4885/68/1/R02 |journal=Reports on Progress in Physics |volume=68 |issue=1 |pages=77–130 |doi=10.1088/0034-4885/68/1/R02 |bibcode=2005RPPh...68...77T |issn=0034-4885}}</ref><ref>{{Cite journal |last1=Goldhaber |first1=Alfred Scharff |last2=Nieto |first2=Michael Martin |date=2010-03-23 |title=Photon and graviton mass limits |url=https://link.aps.org/doi/10.1103/RevModPhys.82.939 |journal=Reviews of Modern Physics |language=en |volume=82 |issue=1 |pages=939–979 |doi=10.1103/RevModPhys.82.939 |issn=0034-6861 |arxiv=0809.1003 |bibcode=2010RvMP...82..939G |access-date=2024-02-01 |archive-date=2024-05-13 |archive-url=https://web.archive.org/web/20240513012520/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.939 |url-status=live }}</ref> is very small, on the order of 10<sup>−50</sup> kg; its lifetime would be more than 10<sup>18</sup> years.<ref>{{Cite journal |last=Heeck |first=Julian |date=2013-07-11 |title=How Stable is the Photon? |url=https://link.aps.org/doi/10.1103/PhysRevLett.111.021801 |journal=Physical Review Letters |language=en |volume=111 |issue=2 |page=021801 |doi=10.1103/PhysRevLett.111.021801 |pmid=23889385 |issn=0031-9007 |arxiv=1304.2821 |bibcode=2013PhRvL.111b1801H |access-date=2024-02-01 |archive-date=2024-05-13 |archive-url=https://web.archive.org/web/20240513012534/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.021801 |url-status=live }}</ref> For comparison the ] is about {{convert|13.8e9|m|m|disp=number}} years. <!--convert does not support time units, using it only for number in scientific notation -->
{{See also|Special relativity}}
<!--] of the exchange of a virtual photon (symbolized by an oscillating line labelled γ (gamma) between a ] and an ].]]
-->]) and the "space" axis represents the angular wavenumber (rad⋅m<sup>−1</sup>). Green and indigo represent left and right<!-- I do not know a "correct" assignment --> polarization]]
A photon is ],{{efn|The ] of the photon is believed to be exactly zero. Some sources also refer to the '']'', which is just the energy scaled to units of mass. For a photon with wavelength ''λ'' or energy ''E'', this is ''h/λc'' or ''E''/''c''<sup>2</sup>. This usage for the term "mass" is no longer common in scientific literature. Further info: }} has no ],<ref>{{cite book|last1=Frisch|first1=David H.|author1-link=David H. Frisch|last2=Thorndike|first2=Alan M.|title=Elementary Particles|year=1964|publisher=]|location=Princeton, NJ|page=22}}</ref><ref name="chargeless">{{cite journal|last=Kobychev|first=V.V.|author2=Popov, S.B.|year=2005|title=Constraints on the photon charge from observations of extragalactic sources|journal=]|volume=31|pages=147–151|doi=10.1134/1.1883345|arxiv=hep-ph/0411398|bibcode=2005AstL...31..147K|issue=3 }}</ref> and is a ]. A photon has two possible ] states.<ref name="Schwartz2014">{{cite book|author=Matthew D. Schwartz|title=Quantum Field Theory and the Standard Model|url=https://books.google.com/books?id=HbdEAgAAQBAJ&pg=PA66|year=2014|publisher=Cambridge University Press|isbn=978-1-107-03473-0|pages=66}}</ref> In the ] of the photon, which is preferred in quantum field theory, a photon is described by its ], which determines its wavelength ''λ'' and its direction of propagation. A photon's wave vector may not be zero and can be represented either as a ] or as a (relativistic) ]; in the latter case it belongs to the ] (pictured). Different signs of the four-vector denote different ]s, but in the 3-vector representation one should account for the polarization state separately; it actually is a ]. In both cases the space of possible wave vectors is three-dimensional.


The photon is the ] for ],<ref>Role as gauge boson and polarization section 5.1 in{{Cite book|last=Aitchison|first=I.J.R.|last2=Hey|first2=A.J.G.|title=Gauge Theories in Particle Physics|publisher=]|year=1993|url={{google books |plainurl=y |id=ZJ-ZY8NW9TIC}}|isbn=978-0-85274-328-7}}</ref>{{rp|29–30}} and therefore all other quantum numbers of the photon (such as ], ], and ]) are zero.<ref>See p.31 in{{Cite journal|doi=10.1016/j.physletb.2008.07.018|last=Amsler|first=C.|display-authors=etal|title=Review of Particle Physics|journal=]|volume=667|pages=1–1340|year=2008|bibcode=2008PhLB..667....1A|url=http://scipp.ucsc.edu/%7Ehaber/pubs/Review_of_Particle_Physics_2014.pdf}}</ref> Also, the photon does not obey the ],<ref name=Halliday>{{citation |last1=Halliday|first1=David|last2=Resnick|first2=Robert|last3=Walker|first3=Jerl|title = Fundamental of Physics|publisher = John Wiley and Sons, Inc.|location = |edition = 7th|isbn=978-0-471-23231-5|year=2005}}</ref>{{rp|1221}} but instead obeys ]. In a vacuum, a photon has two possible ] states.<ref name="Schwartz2014">{{cite book |first=Matthew D. |last=Schwartz |title=Quantum Field Theory and the Standard Model |url=https://books.google.com/books?id=HbdEAgAAQBAJ&pg=PA66 |year=2014 |publisher=Cambridge University Press |isbn=978-1-107-03473-0 |pages=66}}</ref> The photon is the ] for ],<ref>"Role as gauge boson and polarization" §5.1 in {{cite book |last1=Aitchison |first1=I.J.R. |last2=Hey |first2=A.J.G. |title=Gauge Theories in Particle Physics |publisher=] |year=1993 |url=https://books.google.com/books?id=ZJ-ZY8NW9TIC |isbn=978-0-85274-328-7 |access-date=2016-10-06 |archive-date=2023-01-17 |archive-url=https://web.archive.org/web/20230117203733/https://books.google.com/books?id=ZJ-ZY8NW9TIC |url-status=live }}</ref>{{rp|29–30}} and therefore all other quantum numbers of the photon (such as ], ], and ]) are zero.<ref>{{cite journal |doi=10.1016/j.physletb.2008.07.018 |pmid=10020536 |last=Amsler |first=C. |display-authors=etal |title=Review of Particle Physics |journal=] |volume=667 |issue=1–5 |page=31 |year=2008 |bibcode=2008PhLB..667....1A |url=http://scipp.ucsc.edu/%7Ehaber/pubs/Review_of_Particle_Physics_2014.pdf |hdl=1854/LU-685594 |s2cid=227119789 |hdl-access=free |access-date=2017-10-26 |archive-date=2020-06-01 |archive-url=https://web.archive.org/web/20200601115825/http://scipp.ucsc.edu/%7Ehaber/pubs/Review_of_Particle_Physics_2014.pdf |url-status=live }}</ref> Also, the photon obeys ], and not ]. That is, they do ''not'' obey the ]<ref name=Halliday>{{cite book |last1=Halliday |first1=David |last2=Resnick |first2=Robert |last3=Walker |first3=Jerl |title=Fundamental of Physics |publisher=John Wiley and Sons, Inc. |edition=7th |isbn=978-0-471-23231-5 |year=2005 |url=https://archive.org/details/isbn_0471216437}}</ref>{{rp|1221}} and more than one can occupy the same bound quantum state.


Photons are emitted in many natural processes. For example, when a charge is ] it emits ]. During a ], ]ic or ] transition to a lower ], photons of various energy will be emitted, ranging from ]s to ]s. Photons can also be emitted when a particle and its corresponding ] are ] (for example, ]).<ref name=Halliday/>{{rp|572,1114,1172}} Photons are emitted in many natural processes. For example, when a charge is ] it emits ]. During a ], ]ic or ] transition to a lower ], photons of various energy will be emitted, ranging from ]s to ]s. Photons can also be emitted when a particle and its corresponding ] are ] (for example, ]).<ref name=Halliday/>{{rp|572,1114,1172}}


===Relativistic energy and momentum===
In empty space, the photon moves at ''c'' (the ]) and its ] and ] are related by {{nowrap|''E'' {{=}} ''pc''}}, where ''p'' is the ] of the momentum vector '''p'''. This derives from the following relativistic relation, with {{nowrap|''m'' {{=}} 0}}:<ref>See section 1.6 in {{harvnb|Alonso|Finn|1968|loc=Section 1.6}}</ref>
{{See also|Photon energy|Special relativity}}
:<math>E^{2}=p^{2} c^{2} + m^{2} c^{4}.</math>
]) and the "space" axis represents the angular wavenumber (rad⋅m<sup>−1</sup>). Green and indigo represent left and right<!-- I do not know a "correct" assignment --> polarization.]]
In empty space, the photon moves at {{mvar|c}} (the ]) and its ] and ] are related by {{math|1=''E'' = ''pc''}}, where {{mvar|p}} is the ] of the momentum vector {{math|'''''p'''''}}. This derives from the following relativistic relation, with {{math|1=''m'' = 0}}:<ref>See {{harvnb|Alonso|Finn|1968|loc=Section 1.6}}.</ref>
:<math>E^{2} = p^{2} c^{2} + m^{2} c^{4} ~.</math>


The energy and momentum of a photon depend only on its ] (''ν'') or inversely, its ] (''λ''): The energy and momentum of a photon depend only on its ] (<math>\nu</math>) or inversely, its ] ({{mvar|λ}}):
:<math>E = \hbar \, \omega = h \nu = \frac{\, h\,c \,}{\lambda}</math>
:<math>\boldsymbol{p} = \hbar \boldsymbol{k} ~,</math>
where '''{{mvar|k}}''' is the ], where
* {{math| ''k'' ≡ {{abs|'''''k'''''}} {{=}} {{sfrac| 2''π'' |''λ''}} }} &emsp; is the ], and
* {{math| ''ω'' ≡ 2 ''πν''}} &emsp; is the ], and
* {{math| ''ħ'' ≡ {{sfrac|''h''| 2''π'' }} }} &emsp; is the ].<ref>{{cite web |first=Davison E. |last=Soper |title=Electromagnetic radiation is made of photons |department=Institute of Theoretical Science |publisher=] |url=http://pages.uoregon.edu/soper/Light/photons.html |access-date=2024-03-21 |archive-date=2023-04-08 |archive-url=https://web.archive.org/web/20230408082934/https://pages.uoregon.edu/soper/Light/photons.html |url-status=live }}</ref>


Since <math>\boldsymbol{p}</math> points in the direction of the photon's propagation, the magnitude of its momentum is
:<math>E=\hbar\omega=h\nu=\frac{hc}{\lambda}</math>
:<math>p \equiv \left| \boldsymbol{p} \right| = \hbar k = \frac{\, h \nu \,}{c} = \frac{\, h \,}{\lambda} ~.</math>


===Polarization and spin angular momentum===
:<math>\boldsymbol{p}=\hbar\boldsymbol{k},</math>
{{main|Photon polarization|Spin angular momentum of light}}
The photon also carries ], which is related to ]. (Beams of light also exhibit properties described as ]).


The angular momentum of the photon has two possible values, either {{mvar|+ħ}} or {{mvar|−ħ}}. These two possible values correspond to the two possible pure states of ]. Collections of photons in a light beam may have mixtures of these two values; a linearly polarized light beam will act as if it were composed of equal numbers of the two possible angular momenta.<ref name="Hecht">{{Cite book |last=Hecht |first=Eugene |title=Optics |date=1998 |publisher=Addison-Wesley |isbn=978-0-201-83887-9 |edition=3rd |location=Reading, Massachusetts; Harlow |language=en-us}}</ref>{{rp|325}}
where '''''k''''' is the ] (where the wave number {{nowrap|''k'' {{=}} {{!}}'''''k'''''{{!}} {{=}} 2π/''λ''}}), {{nowrap|''ω'' {{=}} 2π''ν''}} is the ], and {{nowrap|''ħ'' {{=}} ''h''/2π}} is the ].<ref>Davison E. Soper, , Institute of Theoretical Science, University of Oregon</ref>


The spin angular momentum of light does not depend on its frequency, and was experimentally verified by ] and S. Bhagavantam in 1931.<ref name="spin">{{Cite journal |last1=Raman |first1=C. V. |author1-link=C. V. Raman |last2=Bhagavantam |first2=S. |year=1931 |title=Experimental proof of the spin of the photon |url=http://dspace.rri.res.in/bitstream/2289/2123/1/1931%20IJP%20V6%20p353.pdf |url-status=dead |journal=Indian Journal of Physics |volume=6 |issue=3244 |page=353 |bibcode=1932Natur.129...22R |doi=10.1038/129022a0 |s2cid=4064852 |archive-url=https://web.archive.org/web/20160603235132/http://dspace.rri.res.in/bitstream/2289/2123/1/1931%20IJP%20V6%20p353.pdf |archive-date=2016-06-03 |access-date=2008-12-28 |hdl-access=free |hdl=10821/664}}</ref>
Since '''''p''''' points in the direction of the photon's propagation, the magnitude of the momentum is


=== Antiparticle annihilation ===
:<math>p=\hbar k=\frac{h\nu}{c}=\frac{h}{\lambda}.</math>
{{Main | Annihilation | Electron-positron annihilation}}
The collision of a particle with its antiparticle can create photons. In free space at least ''two'' photons must be created since, in the ], the colliding antiparticles have no net momentum, whereas a single photon always has momentum (determined by the photon's frequency or wavelength, which cannot be zero). Hence, ] (or equivalently, ]) requires that at least two photons are created, with zero net momentum.{{efn|
However, it is possible if the system interacts with a third particle or field for the annihilation to produce one photon, since the third particle or field can absorb momentum equal and opposite to the single photon, providing dynamic balance. An example is when a positron annihilates with a bound atomic electron; in that case, it is possible for only one photon to be emitted, as the nuclear Coulomb field breaks translational symmetry.}}<ref name=Griffiths2008>{{cite book |last=Griffiths |first=David J. |year=2008 |title=Introduction to Elementary Particles |edition=2nd revised |publisher=WILEY-VCH |isbn=978-3-527-40601-2}}</ref>{{rp|64–65}} The energy of the two photons, or, equivalently, their frequency, may be determined from ].


{{anchor |antiphoton}}Seen another way, the photon can be considered as ] (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, ], is the dominant mechanism by which high-energy photons such as ]s lose energy while passing through matter.<ref>{{harvnb|Alonso|Finn|1968|loc=Section 9.3}}.</ref> That process is the reverse of "annihilation to one photon" allowed in the electric field of an atomic nucleus.
The photon also carries a quantity called ] that does not depend on its frequency.<ref name="spin">This property was experimentally verified by Raman and Bhagavantam in 1931: {{Cite journal|last=Raman|first=C.V.|last2=Bhagavantam|first2=S.|title=Experimental proof of the spin of the photon|url=http://dspace.rri.res.in/bitstream/2289/2123/1/1931%20IJP%20V6%20p353.pdf|format=PDF|authorlink=C. V. Raman|journal=Indian Journal of Physics|volume=6|issue=3244|page=353|year=1931|bibcode=1932Natur.129...22R|doi=10.1038/129022a0|hdl=10821/664}}</ref> The magnitude of its spin is {{sqrt|2}}''ħ'' and the component measured along its direction of motion, its ], must be ±''ħ''. These two possible helicities, called right-handed and left-handed,<!-- Which is which again?--> correspond to the two possible ] states of the photon.<ref>{{Cite book|last=Burgess|first=C.|chapter-url={{google books |plainurl=y |id=PLYECqs2geEC|page=27}}
|last2=Moore|first2=G.|title=The Standard Model. A Primer|publisher=Cambridge University Press|year=2007|isbn=978-0-521-86036-9|chapter=1.3.3.2}}</ref>


The classical formulae for the energy and momentum of ] can be re-expressed in terms of photon events. For example, the ] on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in ] per unit time.<ref>{{cite book |last1=Born |first1=Max |url={{google books |plainurl=y |id=NmM-KujxMtoC}} |title=Atomic Physics |last2=Blin-Stoyle |first2=Roger John |last3=Radcliffe |first3=J. M. |date=1989 |publisher=Courier Corporation |isbn=978-0-486-65984-8 |language=en |section=Appendix&nbsp;XXXII}}</ref>
To illustrate the significance of these formulae, the annihilation of a particle with its antiparticle in free space must result in the creation of at least ''two'' photons for the following reason. In the ], the colliding antiparticles have no net momentum, whereas a single photon always has momentum (since, as we have seen, it is determined by the photon's frequency or wavelength, which cannot be zero). Hence, ] (or equivalently, ]) requires that at least two photons are created, with zero net momentum. (However, it is possible if the system interacts with another particle or field for the annihilation to produce one photon, as when a positron annihilates with a bound atomic electron, it is possible for only one photon to be emitted, as the nuclear Coulomb field breaks translational symmetry.)<ref name=Griffiths2008>{{citation| author=Griffiths, David J.|title=Introduction to Elementary Particles|edition=2nd revised| publisher=WILEY-VCH |year=2008|isbn= 978-3-527-40601-2}}</ref>{{rp|64–65}} The energy of the two photons, or, equivalently, their frequency, may be determined from ]. Seen another way, the photon can be considered as its own antiparticle. The reverse process, ], is the dominant mechanism by which high-energy photons such as ]s lose energy while passing through matter.<ref>{{harvnb|Alonso|Finn|1968|loc=Section 9.3}}</ref> That process is the reverse of "annihilation to one photon" allowed in the electric field of an atomic nucleus.

The classical formulae for the energy and momentum of ] can be re-expressed in terms of photon events. For example, the ] on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in ] per unit time.<ref>E.g., Appendix XXXII in {{cite book|first1=Max |last1=Born|first2=Roger John|last2= Blin-Stoyle|first3=J.M. |last3=Radcliffe|title=Atomic Physics|url={{google books |plainurl=y |id=NmM-KujxMtoC}}|date=1989|publisher=Courier Corporation|isbn=978-0-486-65984-8}}</ref>

Each photon carries two distinct and independent forms of ]. The ] of a particular photon is always either +''ħ'' or −''ħ''.
The ] of a particular photon can be any integer ''N'', including zero.<ref>
Alan E. Willner.
.
2016.
</ref>


===Experimental checks on photon mass=== ===Experimental checks on photon mass===
Current commonly accepted physical theories imply or assume the photon to be strictly massless. If the photon is not a strictly massless particle, it would not move at the exact speed of light, ''c'', in vacuum. Its speed would be lower and depend on its frequency. Relativity would be unaffected by this; the so-called speed of light, ''c'', would then not be the actual speed at which light moves, but a constant of nature which is the ] on speed that any object could theoretically attain in spacetime.<ref>{{cite journal|author=Mermin, David|title=Relativity without light|doi=10.1119/1.13917|journal=American Journal of Physics|date=February 1984|volume=52|issue=2|pages=119–124|bibcode=1984AmJPh..52..119M }}</ref> Thus, it would still be the speed of spacetime ripples (] and ]s), but it would not be the speed of photons. Current commonly accepted physical theories imply or assume the photon to be strictly massless. If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, ''c'', would then not be the actual speed at which light moves, but a constant of nature which is the ] on speed that any object could theoretically attain in spacetime.<ref>{{cite journal|author=Mermin, David|title=Relativity without light|doi=10.1119/1.13917|journal=American Journal of Physics|date=February 1984|volume=52|issue=2|pages=119–124|bibcode=1984AmJPh..52..119M }}</ref> Thus, it would still be the speed of spacetime ripples (] and ]s), but it would not be the speed of photons.

If a photon did have non-zero mass, there would be other effects as well. ] would be modified and the ] would have an extra physical ]. These effects yield more sensitive experimental probes of the photon mass than the frequency dependence of the speed of light. If Coulomb's law is not exactly valid, then that would allow the presence of an ] to exist within a hollow conductor when it is subjected to an external electric field. This thus allows one to ] Coulomb's law to very high precision.<ref>{{cite journal|last1=Plimpton|first1=S.|last2=Lawton|first2=W.|title=A Very Accurate Test of Coulomb's Law of Force Between Charges|journal=Physical Review|volume=50|page=1066|year=1936|doi=10.1103/PhysRev.50.1066|bibcode=1936PhRv...50.1066P|issue=11 }}</ref> A null result of such an experiment has set a limit of {{nowrap|''m'' ≲ {{val|e=-14|u=eV/c2}}}}.<ref>{{cite journal|last1=Williams|first1=E.|last2=Faller|first2=J.|last3=Hill|first3=H.|title=New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass|journal=Physical Review Letters|volume=26|page=721|year=1971|doi=10.1103/PhysRevLett.26.721|bibcode=1971PhRvL..26..721W|issue=12}}</ref>


Sharper upper limits on the speed of light have been obtained in experiments designed to detect effects caused by the galactic ]. Although the galactic vector potential is very large because the galactic ] exists on very great length scales, only the magnetic field would be observable if the photon is massless. In the case that the photon has mass, the mass term {{sfrac|1|2}}''m''{{sup|2}}''A''{{sub|''μ''}}''A''{{sup|''μ''}} would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on the photon mass of {{nowrap|''m'' &lt; {{val|3|e=-27|u=eV/c2}}}}.<ref>{{cite journal|last1=Chibisov|first1=G V|title=Astrophysical upper limits on the photon rest mass|journal=Soviet Physics Uspekhi|volume=19|page=624|year=1976|doi=10.1070/PU1976v019n07ABEH005277|bibcode=1976SvPhU..19..624C|issue=7 }}</ref> The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring.<ref>{{cite journal|last1=Lakes|first1=Roderic|title=Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential|journal=Physical Review Letters|volume=80|page=1826|year=1998|doi=10.1103/PhysRevLett.80.1826|bibcode=1998PhRvL..80.1826L|issue=9}}</ref> Such methods were used to obtain the sharper upper limit of {{val|1.07|e=-27|u=eV/c2}} (the equivalent of {{val|e=-18|u=atomic mass units}}) given by the ].<ref name=amsler>{{cite journal|last1=Amsler|first1=C|last2=Doser|first2=M|last3=Antonelli|first3=M|last4=Asner|first4=D|last5=Babu|first5=K|last6=Baer|first6=H|last7=Band|first7=H|last8=Barnett|first8=R|last9=Bergren|displayauthors=8|first9=E|title=Review of Particle Physics⁎|journal=]|volume=667|page=1|year=2008|doi=10.1016/j.physletb.2008.07.018|bibcode=2008PhLB..667....1A|url=http://scipp.ucsc.edu/%7Ehaber/pubs/Review_of_Particle_Physics_2014.pdf}} </ref> If a photon did have non-zero mass, there would be other effects as well. ] would be modified and the ] would have an extra physical ]. These effects yield more sensitive experimental probes of the photon mass than the frequency dependence of the speed of light. If Coulomb's law is not exactly valid, then that would allow the presence of an ] to exist within a hollow conductor when it is subjected to an external electric field. This provides a means for precision ].<ref>{{cite journal|last1=Plimpton|first1=S.|last2=Lawton|first2=W.|title=A Very Accurate Test of Coulomb's Law of Force Between Charges|journal=Physical Review|volume=50|page=1066|year=1936|doi=10.1103/PhysRev.50.1066|bibcode=1936PhRv...50.1066P|issue=11 }}</ref> A null result of such an experiment has set a limit of {{nowrap|''m'' {{val|e=-14|u=eV/c2}}}}.<ref>{{cite journal|last1=Williams|first1=E.|last2=Faller|first2=J.|last3=Hill|first3=H.|title=New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass|journal=Physical Review Letters|volume=26|page=721|year=1971|doi=10.1103/PhysRevLett.26.721|bibcode=1971PhRvL..26..721W|issue=12}}</ref>


Sharper upper limits on the mass of light have been obtained in experiments designed to detect effects caused by the galactic ]. Although the galactic vector potential is large because the galactic ] exists on great length scales, only the magnetic field would be observable if the photon is massless. In the case that the photon has mass, the mass term {{sfrac|1|2}}''m''{{sup|2}}''A''{{sub|''μ''}}''A''{{sup|''μ''}} would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on the photon mass of {{nowrap|''m'' &lt; {{val|3|e=-27|u=eV/c2}}}}.<ref>{{cite journal |last1=Chibisov |first1=G. V. |year=1976 |title=Astrophysical upper limits on the photon rest mass |journal=Soviet Physics Uspekhi |volume=19 |issue=7 |page=624 |bibcode=1976SvPhU..19..624C |doi=10.1070/PU1976v019n07ABEH005277}}</ref> The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring.<ref>{{cite journal|last1=Lakes|first1=Roderic|title=Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential|journal=Physical Review Letters|volume=80|page=1826|year=1998|doi=10.1103/PhysRevLett.80.1826|bibcode=1998PhRvL..80.1826L|issue=9}}</ref> Such methods were used to obtain the sharper upper limit of {{val|1.07|e=-27|u=eV/c2}} (the equivalent of {{val|e=-36|u=]s}}) given by the ].<ref name=amsler>{{cite journal|last1=Amsler|first1=C|last2=Doser|first2=M|last3=Antonelli|first3=M|last4=Asner|first4=D|last5=Babu|first5=K|last6=Baer|first6=H|last7=Band|first7=H|last8=Barnett|first8=R|last9=Bergren|display-authors=8|first9=E|title=Review of Particle Physics⁎|journal=]|volume=667|issue=1–5|page=1|year=2008|doi=10.1016/j.physletb.2008.07.018|bibcode=2008PhLB..667....1A|url=http://scipp.ucsc.edu/%7Ehaber/pubs/Review_of_Particle_Physics_2014.pdf|hdl=1854/LU-685594|s2cid=227119789|hdl-access=free|access-date=2017-10-26|archive-date=2020-06-01|archive-url=https://web.archive.org/web/20200601115825/http://scipp.ucsc.edu/%7Ehaber/pubs/Review_of_Particle_Physics_2014.pdf|url-status=live}} {{Webarchive|url=https://web.archive.org/web/20100109093036/http://pdg.lbl.gov/2009/tables/contents_tables.html |date=2010-01-09 }}</ref>
These sharp limits from the non-observation of the effects caused by the galactic vector potential have been shown to be model-dependent.<ref>{{cite journal|last1=Adelberger|first1=Eric|last2=Dvali|first2=Gia|last3=Gruzinov|first3=Andrei|title=Photon-Mass Bound Destroyed by Vortices|journal=Physical Review Letters|volume=98|issue=1|page=010402|year=2007|pmid=17358459|doi=10.1103/PhysRevLett.98.010402|bibcode=2007PhRvL..98a0402A|arxiv=hep-ph/0306245 }} </ref> If the photon mass is generated via the ] then the upper limit of {{nowrap|''m'' ≲ {{val|e=-14|u=eV/c2}}}} from the test of Coulomb's law is valid.


These sharp limits from the non-observation of the effects caused by the galactic vector potential have been shown to be model-dependent.<ref>{{cite journal|last1=Adelberger|first1=Eric|last2=Dvali|first2=Gia|last3=Gruzinov|first3=Andrei|title=Photon-Mass Bound Destroyed by Vortices|journal=Physical Review Letters|volume=98|issue=1|page=010402|year=2007|pmid=17358459|doi=10.1103/PhysRevLett.98.010402|bibcode=2007PhRvL..98a0402A|arxiv=hep-ph/0306245 |s2cid=31249827}}</ref> If the photon mass is generated via the ] then the upper limit of {{nowrap|''m'' ≲ {{val|e=-14|u=eV/c2}}}} from the test of Coulomb's law is valid.
<!--
NOTE BEFORE DELETION:Don't confuse absorption and remission with a single photon. This is untrue, an overstretch, and may confuse:
Photons inside ] develop a nonzero ]; as a result, electromagnetic forces become short-range inside superconductors.<ref>{{cite book Photons inside ] develop a nonzero ]; as a result, electromagnetic forces become short-range inside superconductors.<ref>{{cite book
|last=Wilczek |first=Frank |last=Wilczek |first=Frank
Line 106: Line 131:
|doi=10.1063/1.3120899 |doi=10.1063/1.3120899
}}</ref> }}</ref>
-->

{{See also|Supernova/Acceleration Probe}}


==Historical development== ==Historical development==
{{Main article|Light}} {{Main|Light}}
]'s ] in 1801 showed that light can act as a ], helping to invalidate early ] theories of light.<ref name=Halliday/>{{rp|964}}]] ]'s ] in 1801 showed that light can act as a ], helping to invalidate early ] theories of light.<ref name=Halliday/>{{rp|964}}]]
In most theories up to the eighteenth century, light was pictured as being made up of particles. Since ] models cannot easily account for the ], ] and ] of light, wave theories of light were proposed by ] (1637),<ref>{{cite book|last=Descartes|first=R.|authorlink=René Descartes|title=Discours de la méthode (Discourse on Method)|publisher=Imprimerie de Ian Maire|year=1637|isbn=978-0-268-00870-3|url={{google books |plainurl=y |id=difXAAAAMAAJ}}|language=fr}}</ref> ] (1665),<ref>{{cite book|last=Hooke|first=R.|authorlink=Robert Hooke|year=1667|location=London|publisher=]|url=http://digital.library.wisc.edu/1711.dl/HistSciTech.HookeMicro|title=Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon&nbsp;... |isbn=978-0-486-49564-4}}</ref> and ] (1678);<ref>{{cite book|last=Huygens|first=C.|authorlink=Christiaan Huygens|year=1678|title=Traité de la lumière|language=fr|title-link=Traité de la lumière}}. An is available from ]</ref> however, particle models remained dominant, chiefly due to the influence of ].<ref name="Newton1730">{{cite book|last=Newton|first=I.|authorlink=Isaac Newton|origyear=1730|year=1952|title=Opticks|edition=4th|pages=Book II, Part III, Propositions XII–XX; Queries 25–29|nopp=true|location=Dover, NY|url={{google books |plainurl=y |id=bSiTKcLf07UC}}|publisher=Dover Publications|isbn=978-0-486-60205-9 In most theories up to the eighteenth century, light was pictured as being made of particles. Since ] models cannot easily account for the ], ] and ] of light, wave theories of light were proposed by ] (1637),<ref>{{cite book |last=Descartes |first=René |url={{google books |plainurl=y |id=difXAAAAMAAJ}} |title=Discours de la méthode (Discourse on Method) |publisher=Imprimerie de Ian Maire |year=1637 |isbn=978-0-268-00870-3 |language=fr |author-link=René Descartes}}</ref> ] (1665),<ref>{{cite book |last=Hooke |first=Robert |url=http://digital.library.wisc.edu/1711.dl/HistSciTech.HookeMicro |title=Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon&nbsp;... |publisher=] |year=1667 |isbn=978-0-486-49564-4 |location=London, UK |language=en-uk |author-link=Robert Hooke |access-date=2006-09-26 |archive-date=2008-12-02 |archive-url=https://web.archive.org/web/20081202101129/http://digital.library.wisc.edu/1711.dl/HistSciTech.HookeMicro |url-status=live }}</ref> and ] (1678);<ref>{{cite book |last=Huygens |first=Christiaan |title=Traité de la lumière |title-link=Traité de la lumière |year=1678 |language=fr |author-link=Christiaan Huygens}}. An ] is available from ]</ref> however, particle models remained dominant, chiefly due to the influence of ].<ref name="Newton1730">{{cite book |last=Newton |first=Isaac |url={{google books |plainurl=y |id=bSiTKcLf07UC}} |title=Opticks |publisher=Dover Publications |year=1952 |isbn=978-0-486-60205-9 |edition=4th |location=Dover, New York |at=Book II, Part III, Propositions XII–XX; Queries 25–29 |language=en |author-link=Isaac Newton |orig-year=1730}}</ref> In the early 19th century, ] and ] clearly demonstrated the ] and diffraction of light, and by 1850 wave models were generally accepted.<ref>{{cite journal |last=Buchwald |first=J. Z. |url={{google books |plainurl=y |id=EbDw1lV_MKsC}} |title=The Rise of the Wave Theory of Light: Optical theory and experiment in the early nineteenth century |journal=Physics Today |publisher=University of Chicago Press |year=1989 |isbn=978-0-226-07886-1 |volume=43 |pages=78–80 |language=en-us |bibcode=1990PhT....43d..78B |doi=10.1063/1.2810533 |oclc=18069573 |issue=4}}</ref> ]'s 1865 ]<ref name="maxwell">{{cite journal |last=Maxwell |first=James Clerk |author-link=James Clerk Maxwell |year=1865 |title=A Dynamical Theory of the Electromagnetic Field |journal=] |volume=155 |pages=459–512 |bibcode=1865RSPT..155..459M |doi=10.1098/rstl.1865.0008 |s2cid=186207827 |title-link=A dynamical theory of the electromagnetic field}} This article followed a presentation by Maxwell on 8&nbsp;December 1864 to the Royal Society.</ref> that light was an electromagnetic wave – which was confirmed experimentally in 1888 by ]'s detection of ]<ref name="hertz">{{cite journal |last=Hertz |first=Heinrich |author-link=Heinrich Hertz |year=1888 |title=Über Strahlen elektrischer Kraft |journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften |language=de |volume=1888 |pages=1297–1307 |place=Berlin, Deutschland}}</ref> – seemed to be the final blow to particle models of light.
}}</ref> In the early nineteenth century, ] and ] clearly demonstrated the ] and diffraction of light and by 1850 wave models were generally accepted.<ref>{{cite book|last=Buchwald|first=J.Z.|year=1989|title=The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century|journal=Physics Today|volume=43|issue=4|pages=78|publisher=University of Chicago Press|url={{google books |plainurl=y |id=EbDw1lV_MKsC}}|isbn=978-0-226-07886-1|oclc=18069573|bibcode=1990PhT....43d..78B|doi=10.1063/1.2810533}}</ref> In 1865, ]'s ]<ref name="maxwell">{{cite journal|last=Maxwell|first=J.C.|authorlink=James Clerk Maxwell|year=1865|title=A Dynamical Theory of the Electromagnetic Field|journal=]|volume=155|pages=459–512|doi=10.1098/rstl.1865.0008|bibcode=1865RSPT..155..459C|title-link=A Dynamical Theory of the Electromagnetic Field}} This article followed a presentation by Maxwell on 8 December 1864 to the Royal Society.</ref> that light was an electromagnetic wave—which was confirmed experimentally in 1888 by ]'s detection of ]<ref name="hertz">{{cite journal|last=Hertz|first=H.|authorlink=Heinrich Hertz|year=1888|title=Über Strahlen elektrischer Kraft|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin)|volume=1888|pages=1297–1307|language=de}}</ref>—seemed to be the final blow to particle models of light.


] ] as oscillating ] and ]s seemed complete. However, several observations could not be explained by any wave model of ], leading to the idea that light-energy was packaged into ''quanta'' described by E=hν. Later experiments showed that these light-quanta also carry momentum and, thus, can be considered ]: the ''photon'' concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.]] ] ] as oscillating ] and ]s seemed complete. However, several observations could not be explained by any wave model of ], leading to the idea that light-energy was packaged into ''quanta'' described by {{nobr| {{mvar|E {{=}} }}.}} Later experiments showed that these light-quanta also carry momentum and, thus, can be considered ]: The ''photon'' concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.]]
The ], however, does not account for ''all'' properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its ], not on its ]; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, ] are provoked only by light of frequency higher than a certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it (the ]); the energy of the ejected electron is related only to the light's frequency, not to its intensity.<ref>Frequency-dependence of luminiscence pp. 276ff., photoelectric effect section 1.4 in {{harvnb|Alonso|Finn|1968}}</ref>{{efn|The phrase "no matter how intense" refers to intensities below approximately 10<sup>13</sup> W/cm<sup>2</sup> at which point ] begins to break down. In contrast, in the intense regime, which for visible light is above approximately 10<sup>14</sup> W/cm<sup>2</sup>, the classical wave description correctly predicts the energy acquired by electrons, called ]. (See also: Boreham ''et al.'' (1996). "".) By comparison, sunlight is only about 0.1 W/cm<sup>2</sup>.}}


The ], however, does not account for ''all'' properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its ], not on its ]; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, ] are provoked only by light of frequency higher than a certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it (the ]); the energy of the ejected electron is related only to the light's frequency, not to its intensity.<ref>"Frequency-dependence of luminiscence" pp. 276ff., §1.4 "photoelectric effect" in {{harvnb|Alonso|Finn|1968}}.</ref>{{efn|
At the same time, investigations of ] carried out over four decades (1860–1900) by various researchers<ref name="Wien1911">{{cite web|last=Wien|first=W.|authorlink=Wilhelm Wien|year=1911|url=http://nobelprize.org/nobel_prizes/physics/laureates/1911/wien-lecture.html|title=Wilhelm Wien Nobel Lecture|publisher=nobelprize.org}}</ref> culminated in ]'s ]<ref name="Planck1901">
The phrase "no matter how intense" refers to intensities ''below'' approximately {{10^|13}}&nbsp;W/cm<sup>2</sup> at which point ] begins to break down.
{{cite journal|last=Planck|first=M.|authorlink=Max Planck|year=1901|title=Über das Gesetz der Energieverteilung im Normalspectrum|journal=]|volume=4|pages=553–563|doi=10.1002/andp.19013090310|bibcode=1901AnP...309..553P
In contrast, in the intense regime, which for visible light is above approximately {{10^|14}}&nbsp;W/cm<sup>2</sup>, the classical wave description correctly predicts the energy acquired by electrons, called ].<ref>See also: {{cite journal |bibcode = 1996AIPC..369.1234B |title = Photon density and the correspondence principle of electromagnetic interaction |journal = AIP Conference Proceedings |volume = 369 |pages = 1234–1243 |last1 = Boreham|first1 = Bruce W. |last2 = Hora|first2 = Heinrich |last3 = Bolton |first3 = Paul R. |year = 1996 |doi = 10.1063/1.50410}}</ref>
|issue=3 |language=de}} </ref><ref name="Planck1918">
By comparison, sunlight is only about 0.1&nbsp;W/cm<sup>2</sup>.
{{cite web|last=Planck|first=M.|authorlink=Max Planck|year=1920|url=http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html|title=Max Planck's Nobel Lecture|publisher=nobelprize.org}}</ref> that the energy of ''any'' system that absorbs or emits electromagnetic radiation of frequency ''ν'' is an integer multiple of an energy quantum {{nowrap|1=''E'' = ''hν''}}. As shown by ],<ref name="Einstein1905" /><ref name="Einstein1909" /> some form of energy quantization ''must'' be assumed to account for the thermal equilibrium observed between matter and ]; for this explanation of the ], Einstein received the 1921 ] in physics.<ref>Presentation speech by ] for the 1921 Nobel Prize in Physics, December 10, 1922. from , The Nobel Foundation 2008. Access date 2008-12-05.</ref>
}}


At the same time, investigations of ] carried out over four decades (1860–1900) by various researchers<ref name="Wien1911">{{cite web |last=Wien |first=W. |author-link=Wilhelm Wien |year=1911 |url=http://nobelprize.org/nobel_prizes/physics/laureates/1911/wien-lecture.html |title=Wilhelm Wien Nobel Lecture |website=nobelprize.org |access-date=2006-08-25 |archive-date=2011-07-15 |archive-url=https://web.archive.org/web/20110715190243/http://nobelprize.org/nobel_prizes/physics/laureates/1911/wien-lecture.html |url-status=live }}</ref> culminated in ]'s ]<ref name="Planck1901">
Since the Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself.<ref name="Einstein1905" /> Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if the ''energy'' of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space.<ref name="Einstein1905" /> In 1909<ref name="Einstein1909">{{cite journal|last=Einstein|first=A.|authorlink=Albert Einstein|year=1909|title=Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung|url=http://www.ekkehard-friebe.de/EINSTEIN-1909-P.pdf|journal=]|volume=10|pages=817–825|language=de}}. An ] is available from ].
{{cite journal |last=Planck |first=Max |author-link=Max Planck |year=1901 |title=Über das Gesetz der Energieverteilung im Normalspectrum |journal=] |language=de |volume=4 |issue=3 |pages=553–563 |bibcode=1901AnP...309..553P |doi=10.1002/andp.19013090310 |doi-access=free}} </ref><ref name="Planck1918">{{cite web |last=Planck |first=Max |author-link=Max Planck |year=1920 |title=Max Planck's Nobel Lecture |url=http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html |publisher=nobelprize.org |access-date=2006-08-25 |archive-date=2011-07-15 |archive-url=https://web.archive.org/web/20110715190331/http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html |url-status=live }}</ref> that the energy of ''any'' system that absorbs or emits electromagnetic radiation of frequency {{mvar|ν}} is an integer multiple of an energy quantum {{nobr| {{mvar|E}} {{=}} {{mvar|hν}} .}} As shown by ],<ref name="Einstein1905"/><ref name="Einstein1909"/> some form of energy quantization ''must'' be assumed to account for the thermal equilibrium observed between matter and ]; for this explanation of the photoelectric effect, Einstein received the 1921 ] in physics.<ref>Presentation speech by ] for the 1921 Nobel Prize in Physics, December 10, 1922. {{Webarchive|url=https://web.archive.org/web/20110904232203/http://www.nobelprize.org/nobel_prizes/physics/laureates/1921/press.html |date=2011-09-04 }} from , The Nobel Foundation 2008. Access date 2008-12-05.</ref>
</ref> and 1916,<ref name="Einstein1916b">{{cite journal|last=Einstein|first=A.|authorlink=Albert Einstein|year=1916|title=Zur Quantentheorie der Strahlung|journal=Mitteilungen der Physikalischen Gesellschaft zu Zürich|volume=16|page=47}} Also ''Physikalische Zeitschrift'', '''18''', 121–128 (1917). {{de icon}}</ref> Einstein showed that, if ] is accepted, the energy quanta must also carry ] {{nowrap|1=''p'' = ''h''/''λ''}}, making them full-fledged ]. This photon momentum was observed experimentally<ref name="Compton1923">{{cite journal|last=Compton|first=A.|authorlink=Arthur Compton|year=1923|title=A Quantum Theory of the Scattering of X-rays by Light Elements|url=http://www.aip.org/history/gap/Compton/01_Compton.html|journal=]|volume=21|pages=483–502|doi=10.1103/PhysRev.21.483|bibcode=1923PhRv...21..483C|issue=5}}</ref> by ], for which he received the ] in 1927. The pivotal question was then: how to unify Maxwell's wave theory of light with its experimentally observed particle nature? The answer to this question occupied ] for the rest of his life,<ref name="Pais1982">{{cite book|last=Pais|first=A.|authorlink=Abraham Pais|year=1982|title=Subtle is the Lord: The Science and the Life of Albert Einstein|url=https://www.questia.com/PM.qst?a=o&d=74596612|publisher=Oxford University Press|isbn=978-0-19-853907-0}}</ref> and was solved in ] and its successor, the ] (see ''{{section link||Second quantization}}'' and ''{{section link||The photon as a gauge boson}}'', below).


Since the Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself.<ref name="Einstein1905"/> Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if the ''energy'' of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space.<ref name="Einstein1905" /> In 1909<ref name="Einstein1909">{{cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1909 |title=Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung |url=http://www.ekkehard-friebe.de/EINSTEIN-1909-P.pdf |journal=] |language=de |volume=10 |pages=817–825 |access-date=2010-08-25 |archive-date=2011-06-07 |archive-url=https://web.archive.org/web/20110607135402/http://www.ekkehard-friebe.de/EINSTEIN-1909-P.pdf |url-status=live }} An ] is available from ].</ref> and 1916,<ref name="Einstein1916b">{{cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1916 |title=Zur Quantentheorie der Strahlung |journal=Mitteilungen der Physikalischen Gesellschaft zu Zürich |language=de |volume=16 |page=47}} Also ''Physikalische Zeitschrift'' (in German), '''18''', 121–128 (1917).</ref> Einstein showed that, if ] regarding black-body radiation is accepted, the energy quanta must also carry ] {{nobr|{{mvar| p {{=}} {{sfrac| h | λ }} }},}} making them full-fledged particles. This photon momentum was observed experimentally by ],<ref name="Compton1923">{{cite journal |last=Compton |first=Arthur |author-link=Arthur Compton |year=1923 |title=A quantum theory of the scattering of X-rays by light elements |url=https://history.aip.org/history/exhibits/gap/Compton/Compton.html#compton1 |journal=] |language=en |volume=21 |issue=5 |pages=483–502 |bibcode=1923PhRv...21..483C |doi=10.1103/PhysRev.21.483 |doi-access=free |access-date=2020-11-08 |archive-date=2018-01-29 |archive-url=https://web.archive.org/web/20180129004433/https://history.aip.org/history/exhibits/gap/Compton/Compton.html#compton1 |url-status=live }}</ref> for which he received the Nobel Prize in 1927. The pivotal question then, was how to unify Maxwell's wave theory of light with its experimentally observed particle nature. The answer to this question occupied Albert Einstein for the rest of his life,<ref name="Pais1982">{{cite book |last=Pais |first=A. |author-link=Abraham Pais |year=1982 |title=Subtle is the Lord: The science and the life of Albert Einstein |url=https://archive.org/details/subtleislordscie00pais |publisher=Oxford University Press |isbn=978-0-19-853907-0}}</ref> and was solved in ] and its successor, the ]. (See ''{{section link||Quantum field theory}}'' and ''{{section link||As a gauge boson}}'', below.)
==Einstein's light quantum==
Unlike Planck, Einstein entertained the possibility that there might be actual physical quanta of light—what we now call photons. He noticed that a light quantum with energy proportional to its frequency would explain a number of troubling puzzles and paradoxes, including an unpublished law by Stokes, the ], and the ]. Stokes's law said simply that the frequency of fluorescent light cannot be greater than the frequency of the light (usually ultraviolet) inducing it. Einstein eliminated the ultraviolet catastrophe by imagining a gas of photons behaving like a gas of electrons that he had previously considered. He was advised by a colleague to be careful how he wrote up this paper, in order to not challenge Planck, a powerful figure in physics, too directly, and indeed the warning was justified, as Planck never forgave him for writing it.<ref>''Einstein and the Quantum: The Quest of the Valiant Swabian'', A. Douglas Stone, Princeton University Press, 2013.</ref>


] of the ] (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to ].]]
==Early objections==
] of the ] (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to ].]]


Einstein's 1905 predictions were verified experimentally in several ways in the first two decades of the 20th century, as recounted in ]'s Nobel lecture.<ref name="Millikan1923">{{cite web|last=Millikan|first=R.A|authorlink=Robert Millikan|year=1924|url=http://nobelprize.org/nobel_prizes/physics/laureates/1923/millikan-lecture.html|title=Robert A. Millikan's Nobel Lecture}}</ref> However, before ]<ref name="Compton1923" /> showed that photons carried ] proportional to their ] (1922), most physicists were reluctant to believe that ] itself might be particulate. (See, for example, the Nobel lectures of ],<ref name="Wien1911" /> ]<ref name="Planck1918" /> and Millikan.<ref name="Millikan1923" />) Instead, there was a widespread belief that energy quantization resulted from some unknown constraint on the matter that absorbed or emitted radiation. Attitudes changed over time. In part, the change can be traced to experiments such as ], where it was much more difficult not to ascribe quantization to light itself to explain the observed results.<ref>{{Cite journal|last=Hendry|first=J.|year=1980|title=The development of attitudes to the wave-particle duality of light and quantum theory, 1900–1920|journal=]|volume=37|issue=1|pages=59–79|doi=10.1080/00033798000200121}}</ref> Einstein's 1905 predictions were verified experimentally in several ways in the first two decades of the 20th century, as recounted in ]'s Nobel lecture.<ref name="Millikan1923">{{cite web |last=Millikan |first=Robert A. |author-link=Robert Millikan |year=1924 |title=Robert A. Millikan's Nobel Lecture |url=http://nobelprize.org/nobel_prizes/physics/laureates/1923/millikan-lecture.html |access-date=2006-08-25 |archive-date=2011-07-15 |archive-url=https://web.archive.org/web/20110715190254/http://nobelprize.org/nobel_prizes/physics/laureates/1923/millikan-lecture.html |url-status=live }}</ref> However, before Compton's experiment<ref name="Compton1923"/> showed that photons carried momentum proportional to their ] (1922),{{Full citation needed|date=November 2020}} most physicists were reluctant to believe that electromagnetic radiation itself might be particulate. (See, for example, the Nobel lectures of ],<ref name="Wien1911"/> Planck<ref name="Planck1918" /> and Millikan.)<ref name="Millikan1923"/> Instead, there was a widespread belief that energy quantization resulted from some unknown constraint on the matter that absorbed or emitted radiation. Attitudes changed over time. In part, the change can be traced to experiments such as those revealing ], where it was much more difficult not to ascribe quantization to light itself to explain the observed results.<ref>{{cite journal |last=Hendry |first=J. |year=1980 |title=The development of attitudes to the wave–particle duality of light and quantum theory, 1900–1920 |journal=] |volume=37 |issue=1 |pages=59–79 |doi=10.1080/00033798000200121}}</ref>


Even after Compton's experiment, ], ] and ] made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called ].<ref name="Bohr1924">{{cite journal|last=Bohr|first=N.|authorlink=Niels Bohr|author2=]|author3=]|year=1924|title=The Quantum Theory of Radiation|journal=]|volume=47|issue=281|pages=785–802|doi=10.1080/14786442408565262}} Also '']'', '''24''', 69 (1924).</ref> To account for the data then available, two drastic hypotheses had to be made: Even after Compton's experiment, ], ] and ] made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called ].<ref name="Bohr1924">{{cite journal |last1=Bohr |first1=Niels |author-link=Niels Bohr |last2=Kramers |first2=Hendrik Anthony |author2-link=Hendrik Anthony Kramers |last3=Slater |first3=John C. |author3-link=John C. Slater |year=1924 |title=The Quantum Theory of Radiation |journal=] |volume=47 |issue=281 |pages=785–802 |doi=10.1080/14786442408565262}} Also '']'' (in German), '''24''', p. 69 (1924).</ref> An important feature of the BKS theory is how it treated the ] and the ]. In the BKS theory, energy and momentum are only conserved on the average across many interactions between matter and radiation. However, refined Compton experiments showed that the conservation laws hold for individual interactions.<ref>{{Cite journal|last=Howard |first=Don |date=December 2004|title=Who Invented the "Copenhagen Interpretation"? A Study in Mythology |journal=] |language=en |volume=71 |issue=5 |pages=669–682 |doi=10.1086/425941 |issn=0031-8248 |jstor=10.1086/425941 |s2cid=9454552}}</ref> Accordingly, Bohr and his co-workers gave their model "as honorable a funeral as possible".<ref name="Pais1982"/> Nevertheless, the failures of the BKS model inspired ] in his development of ].<ref name="Heisenberg1932">{{cite web |last=Heisenberg |first=Werner |author-link=Werner Heisenberg |year=1933 |title=Heisenberg Nobel lecture |url=http://nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-lecture.html |access-date=2006-09-11 |archive-date=2011-07-19 |archive-url=https://web.archive.org/web/20110719053050/http://nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-lecture.html |url-status=live }}</ref>

# '''Energy and momentum are conserved only on the average in interactions between matter and radiation, but not in elementary processes such as absorption and emission.''' This allows one to reconcile the discontinuously changing energy of the atom (the jump between energy states) with the continuous release of energy as radiation.
# '''Causality is abandoned'''. For example, ]s are merely ] by a "virtual" electromagnetic field.

However, refined Compton experiments showed that energy–momentum is conserved extraordinarily well in elementary processes; and also that the jolting of the electron and the generation of a new photon in ] obey causality to within 10 ]. Accordingly, Bohr and his co-workers gave their model "as honorable a funeral as possible".<ref name="Pais1982" /> Nevertheless, the failures of the BKS model inspired ] in his development of ].<ref name="Heisenberg1932">{{cite web|last=Heisenberg|first=W.|authorlink=Werner Heisenberg|url=http://nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-lecture.html|title=Heisenberg Nobel lecture|year=1933}}</ref>


A few physicists persisted<ref name="Mandel1976"> A few physicists persisted<ref name="Mandel1976">
{{cite book|last=Mandel|first=L.|authorlink=Leonard Mandel|year=1976|doi=10.1016/S0079-6638(08)70018-0|title=The case for and against semiclassical radiation theory|editor=E. Wolf|publisher=North-Holland|volume=13|pages=27–69|series=]|isbn=978-0-444-10806-7|bibcode=1976PrOpt..13...27M}}</ref> in developing semiclassical models in which ] is not quantized, but matter appears to obey the laws of ]. Although the evidence from chemical and physical experiments for the existence of photons was overwhelming by the 1970s, this evidence could not be considered as ''absolutely'' definitive; since it relied on the interaction of light with matter, and a sufficiently complete theory of matter could in principle account for the evidence. Nevertheless, ''all'' semiclassical theories were refuted definitively in the 1970s and 1980s by photon-correlation experiments.{{efn|These experiments produce results that cannot be explained by any classical theory of light, since they involve anticorrelations that result from the ]. In 1974, the first such experiment was carried out by Clauser, who reported a violation of a classical ]. In 1977, Kimble ''et al.'' demonstrated an analogous anti-bunching effect of photons interacting with a beam splitter; this approach was simplified and sources of error eliminated in the photon-anticorrelation experiment of Grangier ''et al.'' (1986). This work is reviewed and simplified further in Thorn ''et al.'' (2004). (These references are ].)}} Hence, Einstein's hypothesis that quantization is a property of light itself is considered to be proven. {{cite book |last=Mandel |first=Leonard |title=II the Case for and Against Semiclassical Radiation Theory |journal=Progess in Optics |publisher=North-Holland |year=1976 |isbn=978-0-444-10806-7 |editor=Wolf |editor-first=E. |series=] |volume=13 |pages=27–69 |language=en |bibcode=1976PrOpt..13...27M |doi=10.1016/S0079-6638(08)70018-0 |author-link=Leonard Mandel}}</ref> in developing semiclassical models in which electromagnetic radiation is not quantized, but matter appears to obey the laws of ]. Although the evidence from chemical and physical experiments for the existence of photons was overwhelming by the 1970s, this evidence could not be considered as ''absolutely'' definitive; since it relied on the interaction of light with matter, and a sufficiently complete theory of matter could in principle account for the evidence. Nevertheless, ''all'' semiclassical theories were refuted definitively in the 1970s and 1980s by photon-correlation experiments.{{efn|These experiments produce results that cannot be explained by any classical theory of light, since they involve anticorrelations that result from the ]. In 1974, the first such experiment was carried out by Clauser, who reported a violation of a classical ]. In 1977, Kimble ''et al.'' demonstrated an analogous anti-bunching effect of photons interacting with a beam splitter; this approach was simplified and sources of error eliminated in the photon-anticorrelation experiment of Grangier, Roger, & Aspect (1986);<ref>{{cite journal |last1=Grangier |first1=P. |last2=Roger |first2=G. |last3=Aspect |first3=A. |year=1986 |title=Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences |journal=] |volume=1 |issue=4 |pages=173–179 |doi=10.1209/0295-5075/1/4/004 |bibcode=1986EL......1..173G |citeseerx=10.1.1.178.4356|s2cid=250837011 }}</ref> This work is reviewed and simplified further in Thorn, Neel, ''et al.'' (2004).<ref>{{cite journal |last1=Thorn |first1=J.J. |last2=Neel |first2=M.S. |last3=Donato |first3=V.W. |last4=Bergreen |first4=G.S. |last5=Davies |first5=R.E. |last6=Beck |first6=M. |year=2004 |title=Observing the quantum behavior of light in an undergraduate laboratory |journal=] |volume=72 |issue=9 |pages=1210–1219 |doi=10.1119/1.1737397 |bibcode=2004AmJPh..72.1210T |url=http://people.whitman.edu/~beckmk/QM/grangier/Thorn_ajp.pdf |access-date=2009-06-29 |archive-date=2016-02-01 |archive-url=https://web.archive.org/web/20160201214040/http://people.whitman.edu/~beckmk/QM/grangier/Thorn_ajp.pdf |url-status=live }}</ref>
}} Hence, Einstein's hypothesis that quantization is a property of light itself is considered to be proven.


==Wave–particle duality and uncertainty principles== ==Wave–particle duality and uncertainty principles==
{{See also|Wave–particle duality|Squeezed coherent state|Uncertainty principle|De Broglie–Bohm theory}}

] exhibit wave-like interference and particle-like detection at ].]]
Photons, like all quantum objects, exhibit wave-like and particle-like properties. Their dual wave–particle nature can be difficult to visualize. The photon displays clearly wave-like phenomena such as ] and ] on the length scale of its wavelength. For example, a single photon passing through a ] exhibits interference phenomena but only if no measure was made at the slit. A single photon passing through a double-slit experiment lands on the screen with a ] given by its interference pattern determined by ].<ref name="Taylor1909">{{cite conference|last=Taylor|first=G.I.|authorlink=Geoffrey Ingram Taylor|year=1909|title=Interference fringes with feeble light|work=Proceedings of the Cambridge Philosophical Society|volume=15|pages=114–115}}</ref> However, experiments confirm that the photon is ''not'' a short pulse of electromagnetic radiation; it does not spread out as it propagates, nor does it divide when it encounters a ].<ref name="Saleh">{{cite book|author1=Saleh, B.E.A. |author2=Teich, M.C. |lastauthoramp=yes |title=Fundamentals of Photonics|publisher=Wiley|year=2007|isbn=978-0-471-35832-9}}</ref> Rather, the photon seems to be a ] since it is absorbed or emitted ''as a whole'' by arbitrarily small systems, systems much smaller than its wavelength, such as an atomic nucleus (≈10<sup>−15</sup> m across) or even the point-like ]. Nevertheless, the photon is ''not'' a point-like particle whose trajectory is shaped probabilistically by the ], as conceived by ] and others; that hypothesis was also refuted by the photon-correlation experiments cited above. According to our present understanding, the electromagnetic field itself is produced by photons, which in turn result from a local ] and the laws of ] (see ''{{section link||Second quantization}}'' and ''{{section link||The photon as a gauge boson}}'' below).

] ] for locating an ] (shown in blue) with a high-resolution gamma-ray microscope. The incoming ] (shown in green) is scattered by the electron up into the microscope's ] θ. The scattered gamma ray is shown in red. ] shows that the electron position can be resolved only up to an uncertainty Δx that depends on θ and the ] λ of the incoming light.]]

A key element of ] is ] ], which forbids the simultaneous measurement of the position and momentum of a particle along the same direction. Remarkably, the uncertainty principle for charged, material particles ''requires'' the quantization of light into photons, and even the frequency dependence of the photon's energy and momentum.

{{anchor|Locating an electron with an ideal microscope}}An elegant illustration of the uncertainty principle is Heisenberg's ] for locating an electron with an ideal microscope.<ref name="Heisenberg1927">{{cite journal|last=Heisenberg|first=W.|authorlink=Werner Heisenberg|year=1927|url=http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/bond/papers/corr155.1.html|title=Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik|journal=]|volume=43|pages=172–198|doi=10.1007/BF01397280|bibcode=1927ZPhy...43..172H|issue=3–4|language=de}}</ref> The position of the electron can be determined to within the ] of the microscope, which is given by a formula from classical ]

:<math>
\Delta x \sim \frac{\lambda}{\sin \theta}
</math>

where θ is the ] of the microscope and λ is the wavelength of the light used to observe the electron. Thus, the position uncertainty <math>\Delta x</math> can be made arbitrarily small by reducing the wavelength λ. Even if the momentum of the electron is initially known, the light impinging on the electron will give it a momentum "kick" <math>\Delta p</math> of some unknown amount, rendering the momentum of the electron uncertain. If light were ''not'' quantized into photons, the uncertainty <math>\Delta p</math> could be made arbitrarily small by reducing the light's intensity. In that case, since the wavelength and intensity of light can be varied independently, one could simultaneously determine the position and momentum to arbitrarily high accuracy, violating the ]. By contrast, Einstein's formula for photon momentum preserves the uncertainty principle; since the photon is scattered anywhere within the aperture, the uncertainty of momentum transferred equals
:<math>
\Delta p \sim p_{\text{photon}} \sin\theta=\frac{h}{\lambda} \sin\theta
</math>

giving the product <math>\Delta x \Delta p \, \sim \, h</math>, which is Heisenberg's uncertainty principle. Thus, the entire world is quantized; both matter and fields must obey a consistent set of quantum laws, if either one is to be quantized.<ref>E.g., pp. 10ff. in {{Cite book|last=Schiff|first=L.I.|title=Quantum Mechanics|edition=3rd|publisher=McGraw-Hill|year=1968|isbn=978-0-07-055287-6}}</ref>

The analogous uncertainty principle for photons forbids the simultaneous measurement of the number <math>n</math> of photons (see ] and the ] section below) in an electromagnetic wave and the phase <math>\phi</math> of that wave

:<math>
\Delta n \Delta \phi > 1
</math>


Photons obey the laws of quantum mechanics, and so their behavior has both wave-like and particle-like aspects. When a photon is detected by a measuring instrument, it is registered as a single, particulate unit. However, the ''probability'' of detecting a photon is calculated by equations that describe waves. This combination of aspects is known as ]. For example, the ] for the location at which a photon might be detected displays clearly wave-like phenomena such as ] and ]. A single photon passing through a ] has its energy received at a point on the screen with a probability distribution given by its interference pattern determined by ].<ref name="Taylor1909">{{cite journal
See ] and ] for more details.
| first1=G. I. |last1=Taylor | authorlink1=Geoffrey Ingram Taylor
| title=Interference Fringes with Feeble Light
| journal = ]
| volume=15
| page=114
| date=1909
| url=https://archive.org/details/proceedingsofcam15190810camb/page/114/mode/2up | access-date=7 December 2024}}</ref> However, experiments confirm that the photon is ''not'' a short pulse of electromagnetic radiation; a photon's Maxwell waves will diffract, but photon energy does not spread out as it propagates, nor does this energy divide when it encounters a ].<ref name="Saleh">{{cite book |last1=Saleh |first1=B. E. A. |title=Fundamentals of Photonics |last2=Teich |first2=M. C. |publisher=Wiley |year=2007 |isbn=978-0-471-35832-9 |language=en |name-list-style=amp}}</ref> Rather, the received photon acts like a ] since it is absorbed or emitted ''as a whole'' by arbitrarily small systems, including systems much smaller than its wavelength, such as an atomic nucleus (≈10<sup>−15</sup> m across) or even the point-like ].


While many introductory texts treat photons using the mathematical techniques of non-relativistic quantum mechanics, this is in some ways an awkward oversimplification, as photons are by nature intrinsically relativistic. Because photons have zero ], no ] defined for a photon can have all the properties familiar from wave functions in non-relativistic quantum mechanics.{{efn|The issue was first formulated by Theodore Duddell Newton and ].<ref>{{cite journal|last1=Newton|first1=T.D.|last2=Wigner|first2=E.P.|author-link2=Eugene Wigner|year=1949|title=Localized states for elementary particles|journal=]|volume=21|pages=400–406|doi=10.1103/RevModPhys.21.400|bibcode=1949RvMP...21..400N|issue=3|url=https://cds.cern.ch/record/1062641/files/RevModPhys.21.400.pdf|doi-access=free|access-date=2023-06-21|archive-date=2023-05-16|archive-url=https://web.archive.org/web/20230516123629/http://cds.cern.ch/record/1062641/files/RevModPhys.21.400.pdf|url-status=live}}</ref><ref>{{cite journal|last=Bialynicki-Birula|first=I.|year=1994|title=On the wave function of the photon|journal=]|volume=86|issue=1–2|pages=97–116|doi=10.12693/APhysPolA.86.97|bibcode=1994AcPPA..86...97B|doi-access=free}}</ref><ref>{{cite journal|last=Sipe|first=J.E.|year=1995|title=Photon wave functions|journal=Physical Review A|volume=52|pages=1875–1883|doi=10.1103/PhysRevA.52.1875|pmid=9912446|bibcode=1995PhRvA..52.1875S|issue=3}}</ref> The challenges arise from the fundamental nature of the ], which describes the symmetries of ] in special relativity. Unlike the generators of ]s, the generators of ]s do not commute, and so simultaneously assigning low uncertainties to all coordinates of a relativistic particle's position becomes problematic.<ref>{{cite book|last=Bialynicki-Birula|first=I.|year=1996|title=V Photon Wave Function|journal=Progess in Optics|volume=36|pages=245–294|doi=10.1016/S0079-6638(08)70316-0|series=]|isbn=978-0-444-82530-8|bibcode=1996PrOpt..36..245B|s2cid=17695022 }}</ref>}} In order to avoid these difficulties, physicists employ the second-quantized theory of photons described below, ], in which photons are quantized excitations of electromagnetic modes.<ref name="scully1997">{{cite book |last1=Scully |first1=M. O. |url=https://books.google.com/books?id=20ISsQCKKmQC |title=Quantum Optics |last2=Zubairy |first2=M. S. |publisher=Cambridge University Press |year=1997 |isbn=978-0-521-43595-6 |location=Cambridge, England |language=en-uk |access-date=2016-10-06 |archive-date=2024-05-13 |archive-url=https://web.archive.org/web/20240513012544/https://books.google.com/books?id=20ISsQCKKmQC |url-status=live }}</ref>
Both photons and electrons create analogous ] when passed through a ]. For photons, this corresponds to the interference of a ] whereas, for material particles (electron), this corresponds to the interference of the ]. Although this similarity might suggest that ] describing the photon's electromagnetic wave are simply Schrödinger's equation for photons, most physicists do not agree.<ref>
{{cite book|last=Kramers|first=H.A.|authorlink=Hendrik Anthony Kramers|year=1958|title=Quantum Mechanics|publisher=North-Holland|location=Amsterdam|isbn=978-0-486-49533-0}}</ref><ref>{{cite book|last=Bohm|first=D.|authorlink=David Bohm|origyear=1954|year=1989|url={{google books |plainurl=y |id=9DWim3RhymsC|page=592}}|title=Quantum Theory|publisher=Dover Publications|isbn=978-0-486-65969-5}}</ref> For one thing, they are mathematically different; most obviously, Schrödinger's one equation for the electron solves for a ] ], whereas Maxwell's four equations solve for ] fields. More generally, the normal concept of a Schrödinger ] ] cannot be applied to photons.<ref>{{cite journal|last=Newton|first=T.D.|last2=Wigner |first2=E.P. |authorlink2=Eugene Wigner |year=1949|title=Localized states for elementary particles|journal=]|volume=21|pages=400–406|doi=10.1103/RevModPhys.21.400|bibcode=1949RvMP...21..400N|issue=3|url=http://cds.cern.ch/record/1062641/files/RevModPhys.21.400.pdf}}</ref> As photons are massless, they cannot be localized without being destroyed; technically, photons cannot have a position eigenstate <math>|\mathbf{r} \rangle</math>, and, thus, the normal Heisenberg uncertainty principle <math>\Delta x \Delta p > h/2</math> does not pertain to photons. A few substitute wave functions have been suggested for the photon,<ref>{{cite journal|last=Bialynicki-Birula|first=I.|year=1994|url=http://www.cft.edu.pl/~birula/publ/APPPwf.pdf|title=On the wave function of the photon|journal=]|volume=86|pages=97–116}}</ref><ref>{{cite journal|last=Sipe|first=J.E.|year=1995|title=Photon wave functions|journal=Physical Review A|volume=52|pages=1875–1883|doi=10.1103/PhysRevA.52.1875|bibcode=1995PhRvA..52.1875S|issue=3}}</ref><ref>{{cite book|last=Bialynicki-Birula|first=I.|year=1996|title=Photon wave function|volume=36|pages=245–294|doi=10.1016/S0079-6638(08)70316-0|series=]|isbn=978-0-444-82530-8|bibcode=1996PrOpt..36..245B}}</ref><ref>{{cite book|last=Scully|first=M.O.|author2=Zubairy, M.S.|year=1997|title=Quantum Optics|publisher=Cambridge University Press|location=Cambridge|isbn=978-0-521-43595-6|url={{google books |plainurl=y |id=20ISsQCKKmQC}}}}</ref> but they have not come into general use. Instead, physicists generally accept the second-quantized theory of photons described below, ], in which photons are quantized excitations of electromagnetic modes.


Another difficulty is finding the proper analogue for the ], an idea frequently attributed to Heisenberg, who introduced the concept in analyzing a ] involving ]. However, Heisenberg did not give precise mathematical definitions of what the "uncertainty" in these measurements meant. The precise mathematical statement of the position–momentum uncertainty principle is due to ], ], and ].<ref>{{Cite journal|last1=Busch|first1=Paul|author-link1=Paul Busch (physicist) |last2=Lahti|first2=Pekka|last3=Werner|first3=Reinhard F.|date=2013-10-17|title=Proof of Heisenberg's Error-Disturbance Relation|journal=Physical Review Letters|language=en|volume=111|issue=16|pages=160405|doi=10.1103/PhysRevLett.111.160405|pmid=24182239|arxiv=1306.1565|bibcode=2013PhRvL.111p0405B|s2cid=24507489|issn=0031-9007|url=https://www.repo.uni-hannover.de/bitstream/123456789/8834/1/Proof%20of%20Heisenberg%e2%80%99s%20Error-Disturbance%20Relation.pdf}}</ref><ref>{{Cite journal|last=Appleby|first=David Marcus|date=2016-05-06|title=Quantum Errors and Disturbances: Response to Busch, Lahti and Werner|journal=Entropy|language=en|volume=18|issue=5|pages=174|doi=10.3390/e18050174|arxiv=1602.09002|bibcode=2016Entrp..18..174A|doi-access=free}}</ref> The uncertainty principle applies to situations where an experimenter has a choice of measuring either one of two "canonically conjugate" quantities, like the position and the momentum of a particle. According to the uncertainty principle, no matter how the particle is prepared, it is not possible to make a precise prediction for both of the two alternative measurements: if the outcome of the position measurement is made more certain, the outcome of the momentum measurement becomes less so, and vice versa.<ref name="L&L">{{cite book |last1=Landau |first1=Lev D. |url=https://archive.org/details/QuantumMechanics_104 |title=Quantum Mechanics: Non-Relativistic Theory |last2=Lifschitz |first2=Evgeny M. |publisher=] |year=1977 |isbn=978-0-08-020940-1 |edition=3rd |volume=3 |language=en |oclc=2284121 |author-link1=Lev Landau |author-link2=Evgeny Lifshitz}}</ref> A ] minimizes the overall uncertainty as far as quantum mechanics allows.<ref name="scully1997"/> ] makes use of coherent states for modes of the electromagnetic field. There is a tradeoff, reminiscent of the position–momentum uncertainty relation, between measurements of an electromagnetic wave's amplitude and its phase.<ref name="scully1997"/> This is sometimes informally expressed in terms of the uncertainty in the number of photons present in the electromagnetic wave, <math>\Delta N</math>, and the uncertainty in the phase of the wave, <math>\Delta \phi</math>. However, this cannot be an uncertainty relation of the Kennard–Pauli–Weyl type, since unlike position and momentum, the phase <math>\phi</math> cannot be represented by a ].<ref>{{Cite journal |last1=Busch |first1=P. |last2=Grabowski |first2=M. |last3=Lahti |first3=P. J. |date=January 1995 |title=Who Is Afraid of POV Measures? Unified Approach to Quantum Phase Observables |journal=] |language=en |volume=237 |issue=1 |pages=1–11 |bibcode=1995AnPhy.237....1B |doi=10.1006/aphy.1995.1001}}</ref>
Another interpretation, that avoids duality, is the ]: known also as the ''pilot-wave model''. In that theory, the photon is both, wave and particle.<ref>The best illustration is the Couder experiment, demonstrating the behaviour of a mechanical analog, see {{youtube|id=W9yWv5dqSKk}}</ref> ''"This idea seems to me so natural and simple, to resolve the wave-particle dilemma in such a clear and ordinary way, that it is a great mystery to me that it was so generally ignored"'', J.S. Bell.<ref name="bell87">{{cite book|first=J.S. |last=Bell|title=Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy|journal=Cambridge: University Press|url={{google books |plainurl=y |id=FGnnHxh2YtQC}}|date=2004|publisher=Cambridge University Press|isbn=978-0-521-52338-7|bibcode=1987suqm.book.....B}}</ref>


==Bose–Einstein model of a photon gas== ==Bose–Einstein model of a photon gas==
{{Main article|Bose gas|Bose–Einstein statistics|Spin-statistics theorem|Gas in a box}} {{Main|Bose gas|Bose–Einstein statistics|Spin-statistics theorem|Gas in a box|Photon gas}}


In 1924, ] derived ] without using any electromagnetism, but rather by using a modification of coarse-grained counting of ].<ref name="Bose1924">{{cite journal|last=Bose|first=S.N.|authorlink=Satyendra Nath Bose|year=1924|title=Plancks Gesetz und Lichtquantenhypothese|journal=]|volume=26|issue=1|pages=178–181|doi=10.1007/BF01327326|bibcode=1924ZPhy...26..178B|language=de}}</ref> Einstein showed that this modification is equivalent to assuming that photons are rigorously identical and that it implied a "mysterious non-local interaction",<ref name="Einstein1924">{{cite journal|last=Einstein|first=A.|authorlink=Albert Einstein|year=1924|title=Quantentheorie des einatomigen idealen Gases|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse|volume=1924|pages=261–267|language=de}}</ref><ref name="Einstein1925">{{cite book|last=Einstein|first=A.|authorlink=Albert Einstein|year=1925|doi=10.1002/3527608958.ch28|title=Quantentheorie des einatomigen idealen Gases, Zweite Abhandlung|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse|volume=1925|pages=3–14|isbn=978-3-527-60895-9|language=de}}</ref> now understood as the requirement for a ]. This work led to the concept of ]s and the development of the laser. In the same papers, Einstein extended Bose's formalism to material particles (]s) and predicted that they would condense into their lowest ] at low enough temperatures; this ] was observed experimentally in 1995.<ref>{{cite journal|last=Anderson|first=M.H.|author2=Ensher, J.R.|author3=Matthews, M.R.|author4=]|author5=]|title=Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor|journal=]|year=1995|volume=269|pages=198–201|doi=10.1126/science.269.5221.198|pmid=17789847|issue=5221|jstor=2888436|bibcode=1995Sci...269..198A}}</ref> It was later used by ] to slow, and then completely stop, light in 1999<ref>. News.harvard.edu (1999-02-18). Retrieved on 2015-05-11.</ref> and 2001.<ref>. photonics.com (February 2007). Retrieved on 2015-05-11.</ref> In 1924, ] derived ] without using any electromagnetism, but rather by using a modification of coarse-grained counting of ].<ref name="Bose1924">{{cite journal |last=Bose |first=Satyendra Nath |author-link=Satyendra Nath Bose |year=1924 |title=Plancks Gesetz und Lichtquantenhypothese |journal=] |language=de |volume=26 |issue=1 |pages=178–181 |bibcode=1924ZPhy...26..178B |doi=10.1007/BF01327326 |s2cid=186235974}}</ref> Einstein showed that this modification is equivalent to assuming that photons are rigorously identical and that it implied a "mysterious non-local interaction",<ref name="Einstein1924">{{cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1924 |title=Quantentheorie des einatomigen idealen Gases |journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse |language=de |volume=1924 |pages=261–267}}</ref><ref name="Einstein1925">{{cite book |last=Einstein |first=Albert |title=Quantentheorie des einatomigen idealen Gases, Zweite Abhandlung |journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse |year=1925 |isbn=978-3-527-60895-9 |volume=1925 |pages=3–14 |language=de |doi=10.1002/3527608958.ch28 |author-link=Albert Einstein}}</ref> now understood as the requirement for a ]. This work led to the concept of ]s and the development of the laser. In the same papers, Einstein extended Bose's formalism to material particles (bosons) and predicted that they would condense into their lowest ] at low enough temperatures; this ] was observed experimentally in 1995.<ref>{{cite journal |last1=Anderson |first1=M. H. |last2=Ensher |first2=J. R. |last3=Matthews |first3=M. R. |last4=Wieman |first4=Carl E. |author4-link=Carl Wieman |last5=Cornell |first5=Eric Allin |author5-link=Eric Allin Cornell |year=1995 |title=Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor |journal=] |volume=269 |issue=5221 |pages=198–201 |bibcode=1995Sci...269..198A |doi=10.1126/science.269.5221.198 |jstor=2888436 |pmid=17789847 |s2cid=540834 |doi-access=}}</ref> It was later used by ] to slow, and then completely stop, light in 1999<ref>{{Cite web |last=Cuneo |first=Michael |date=1999-02-18 |title=Physicists Slow Speed of Light |url=https://news.harvard.edu/gazette/story/1999/02/physicists-slow-speed-of-light/ |access-date=2023-12-07 |website=Harvard Gazette |language=en-US |archive-date=2000-10-15 |archive-url=https://web.archive.org/web/20001015232230/http://www.news.harvard.edu/gazette/1999/02.18/light.html |url-status=live }}</ref> and 2001.<ref>{{Cite web |title=Light Changed to Matter, Then Stopped and Moved |url=https://www.photonics.com/Articles/Light_Changed_to_Matter_Then_Stopped_and_Moved/a28520 |access-date=2023-12-07 |website=www.photonics.com |archive-date=2019-04-02 |archive-url=https://web.archive.org/web/20190402130851/https://www.photonics.com/Articles/Light_Changed_to_Matter_Then_Stopped_and_Moved/a28520 |url-status=live }}</ref>


The modern view on this is that photons are, by virtue of their integer spin, ]s (as opposed to ]s with half-integer spin). By the ], all bosons obey Bose–Einstein statistics (whereas all fermions obey ]).<ref>{{Cite book|last=Streater|first=R.F.|last2=Wightman|first2=A.S.|title=PCT, Spin and Statistics, and All That|publisher=Addison-Wesley|year=1989|isbn=978-0-201-09410-7}}</ref> The modern view on this is that photons are, by virtue of their integer spin, bosons (as opposed to ]s with half-integer spin). By the ], all bosons obey Bose–Einstein statistics (whereas all fermions obey ]).<ref>{{Cite book |last1=Streater |first1=R. F. |title=PCT, Spin and Statistics, and All That |last2=Wightman |first2=A. S. |publisher=Addison-Wesley |year=1989 |isbn=978-0-201-09410-7 |language=en}}</ref>


==Stimulated and spontaneous emission== ==Stimulated and spontaneous emission==
{{Main article|Stimulated emission|Laser}} {{Main|Stimulated emission|Laser}}
] (in which photons "clone" themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the ]. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.]] ] (in which photons "clone" themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the ]. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.]]


In 1916, Albert Einstein showed that Planck's radiation law could be derived from a semi-classical, statistical treatment of photons and atoms, which implies a link between the rates at which atoms emit and absorb photons. The condition follows from the assumption that functions of the emission and absorption of radiation by the atoms are independent of each other, and that thermal equilibrium is made by way of the radiation's interaction with the atoms. Consider a cavity in ] with all parts of itself and filled with ] and that the atoms can emit and absorb that radiation. Thermal equilibrium requires that the energy density <math>\rho(\nu)</math> of photons with frequency <math>\nu</math> (which is proportional to their ]) is, on average, constant in time; hence, the rate at which photons of any particular frequency are ''emitted'' must equal the rate at which they ''absorb'' them.<ref name="Einstein1916a">{{cite journal|last=Einstein|first=A.|authorlink=Albert Einstein|year=1916|title=Strahlungs-emission und -absorption nach der Quantentheorie|journal=]|volume=18|pages=318–323|bibcode=1916DPhyG..18..318E|language=de}}</ref> In 1916, Albert Einstein showed that Planck's radiation law could be derived from a semi-classical, statistical treatment of photons and atoms, which implies a link between the rates at which atoms emit and absorb photons. The condition follows from the assumption that functions of the emission and absorption of radiation by the atoms are independent of each other, and that thermal equilibrium is made by way of the radiation's interaction with the atoms. Consider a cavity in ] with all parts of itself and filled with ] and that the atoms can emit and absorb that radiation. Thermal equilibrium requires that the energy density <math>\rho(\nu)</math> of photons with frequency <math>\nu</math> (which is proportional to their ]) is, on average, constant in time; hence, the rate at which photons of any particular frequency are ''emitted'' must equal the rate at which they are ''absorbed''.<ref name="Einstein1916a">{{cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1916 |title=Strahlungs-emission und -absorption nach der Quantentheorie |journal=] |language=de |volume=18 |pages=318–323 |bibcode=1916DPhyG..18..318E}}</ref>


Einstein began by postulating simple proportionality relations for the different reaction rates involved. In his model, the rate <math>R_{ji}</math> for a system to ''absorb'' a photon of frequency <math>\nu</math> and transition from a lower energy <math>E_{j}</math> to a higher energy <math>E_{i}</math> is proportional to the number <math>N_{j}</math> of atoms with energy <math>E_{j}</math> and to the energy density <math>\rho(\nu)</math> of ambient photons of that frequency, Einstein began by postulating simple proportionality relations for the different reaction rates involved. In his model, the rate <math>R_{ji}</math> for a system to ''absorb'' a photon of frequency <math>\nu</math> and transition from a lower energy <math>E_{j}</math> to a higher energy <math>E_{i}</math> is proportional to the number <math>N_{j}</math> of atoms with energy <math>E_{j}</math> and to the energy density <math>\rho(\nu)</math> of ambient photons of that frequency,
Line 205: Line 201:
</math> </math>


where <math>A_{ij}</math> is the rate constant for ], and <math>B_{ij}</math> is the rate constant for emissions in response to ambient photons (]). In thermodynamic equilibrium, the number of atoms in state i and those in state j must, on average, be constant; hence, the rates <math>R_{ji}</math> and <math>R_{ij}</math> must be equal. Also, by arguments analogous to the derivation of ], the ratio of <math>N_{i}</math> and <math>N_{j}</math> is <math>g_i/g_j\exp{(E_j-E_i)/(kT)},</math> where <math>g_{i,j}</math> are the ] of the state i and that of j, respectively, <math>E_{i,j}</math> their energies, k the ] and T the system's ]. From this, it is readily derived that where <math>A_{ij}</math> is the rate constant for ], and <math>B_{ij}</math> is the rate constant for emissions in response to ambient photons (]). In thermodynamic equilibrium, the number of atoms in state <math>i</math> and those in state <math>j</math> must, on average, be constant; hence, the rates <math>R_{ji}</math> and <math>R_{ij}</math> must be equal. Also, by arguments analogous to the derivation of ], the ratio of <math>N_{i}</math> and <math>N_{j}</math> is <math>g_i/g_j\exp{(E_j-E_i)/(kT)},</math> where <math>g_i</math> and <math>g_j</math> are the ] of the state <math>i</math> and that of <math>j</math>, respectively, <math>E_i</math> and <math>E_j</math> their energies, <math>k</math> the ] and <math>T</math> the system's ]. From this, it is readily derived that

<math>g_iB_{ij}=g_jB_{ji}</math> and <math>g_iB_{ij}=g_jB_{ji}</math> and
:<math> :<math>
A_{ij}=\frac{8 \pi h \nu^{3}}{c^{3}} B_{ij}. A_{ij}=\frac{8 \pi h \nu^{3}}{c^{3}} B_{ij}.
</math> </math>
The A and Bs are collectively known as the ''Einstein coefficients''.<ref>Section 1.4 in {{cite book|last=Wilson|first=J.|last2=Hawkes|first2=F.J.B.|title=Lasers: Principles and Applications|publisher=Prentice Hall|location=New York|year=1987|isbn=978-0-13-523705-2}}</ref> The <math>A_{ij}</math> and <math>B_{ij}</math> are collectively known as the ''Einstein coefficients''.<ref>{{cite book |last1=Wilson |first1=J. |title=Lasers: Principles and Applications |last2=Hawkes |first2=F. J. B. |publisher=Prentice Hall |year=1987 |isbn=978-0-13-523705-2 |location=New York |at=Section 1.4 |language=en-us}}</ref>


Einstein could not fully justify his rate equations, but claimed that it should be possible to calculate the coefficients <math>A_{ij}</math>, <math>B_{ji}</math> and <math>B_{ij}</math> once physicists had obtained "mechanics and electrodynamics modified to accommodate the quantum hypothesis".<ref>{{cite journal|last=Einstein|first=A.|authorlink=Albert Einstein|year=1916|title=Strahlungs-emission und -absorption nach der Quantentheorie|journal=]|volume=18|pages=318–323|bibcode=1916DPhyG..18..318E|language=de|quote=p. 322: Die Konstanten <math>A^n_m</math> and <math>B^n_m</math> würden sich direkt berechnen lassen, wenn wir im Besitz einer im Sinne der Quantenhypothese modifizierten Elektrodynamik und Mechanik wären."}}</ref> In fact, in 1926, ] derived the <math>B_{ij}</math> rate constants by using a semiclassical approach,<ref name="Dirac1926">{{cite journal|last=Dirac|first=P.A.M.|authorlink=Paul Dirac|year=1926|title=On the Theory of Quantum Mechanics|journal=Proceedings of the Royal Society A|volume=112|pages=661–677|doi=10.1098/rspa.1926.0133|bibcode=1926RSPSA.112..661D|issue=762}}</ref> and, in 1927, succeeded in deriving ''all'' the rate constants from first principles within the framework of quantum theory.<ref name="Dirac1927a">{{cite journal|last=Dirac|first=P.A.M.|authorlink=Paul Dirac|doi=10.1098/rspa.1927.0039|year=1927|title=The Quantum Theory of the Emission and Absorption of Radiation|journal=Proceedings of the Royal Society A|volume=114|pages=243–265|bibcode=1927RSPSA.114..243D|issue=767}}</ref><ref name="Dirac1927b"> Einstein could not fully justify his rate equations, but claimed that it should be possible to calculate the coefficients <math>A_{ij}</math>, <math>B_{ji}</math> and <math>B_{ij}</math> once physicists had obtained "mechanics and electrodynamics modified to accommodate the quantum hypothesis".<ref>{{cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1916 |title=Strahlungs-emission und -absorption nach der Quantentheorie |journal=] |language=de |volume=18 |pages=318–323 |bibcode=1916DPhyG..18..318E |quote=p. 322: Die Konstanten <math>A^n_m</math> and <math>B^n_m</math> würden sich direkt berechnen lassen, wenn wir im Besitz einer im Sinne der Quantenhypothese modifizierten Elektrodynamik und Mechanik wären."}}</ref> Not long thereafter, in 1926, ] derived the <math>B_{ij}</math> rate constants by using a semiclassical approach,<ref name="Dirac1926">{{cite journal |last=Dirac |first=Paul A. M. |author-link=Paul Dirac |year=1926 |title=On the Theory of Quantum Mechanics |journal=Proceedings of the Royal Society A |volume=112 |issue=762 |pages=661–677 |bibcode=1926RSPSA.112..661D |doi=10.1098/rspa.1926.0133 |doi-access=free}}</ref> and, in 1927, succeeded in deriving ''all'' the rate constants from first principles within the framework of quantum theory.<ref name="Dirac1927a">{{cite journal |last=Dirac |first=Paul A. M. |author-link=Paul Dirac |year=1927 |title=The Quantum Theory of the Emission and Absorption of Radiation |journal=Proceedings of the Royal Society A |volume=114 |issue=767 |pages=243–265 |bibcode=1927RSPSA.114..243D |doi=10.1098/rspa.1927.0039 |doi-access=free}}</ref><ref name="Dirac1927b">
{{cite conference|last=Dirac|first=P.A.M.|authorlink=Paul Dirac|year=1927b|title=The Quantum Theory of Dispersion|journal=] A|volume=114|pages=710–728|doi=10.1098/rspa.1927.0071|bibcode=1927RSPSA.114..710D}}</ref> Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called ''second quantization'' or ];<ref name="Heisenberg1929"> {{cite journal |last=Dirac |first=Paul A. M. |author-link=Paul Dirac |year=1927b |title=The Quantum Theory of Dispersion |journal=Proceedings of the Royal Society A |volume=114 |issue=769 |pages=710–728 |bibcode=1927RSPSA.114..710D |doi=10.1098/rspa.1927.0071 |doi-access=free}}</ref> Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called ''second quantization'' or ];<ref name="Heisenberg1929">
{{cite journal|last=Heisenberg|first=W.|authorlink=Werner Heisenberg|author2=Pauli, W. |authorlink2=Wolfgang Pauli |year=1929|title=Zur Quantentheorie der Wellenfelder|journal=]|volume=56|issue=1–2|page=1|doi=10.1007/BF01340129|bibcode=1929ZPhy...56....1H|language=de}}</ref><ref name="Heisenberg1930"> {{cite journal |last1=Heisenberg |first1=Werner |author-link=Werner Heisenberg |last2=Pauli |first2=Wolfgang |author-link2=Wolfgang Pauli |year=1929 |title=Zur Quantentheorie der Wellenfelder |journal=] |language=de |volume=56 |issue=1–2 |page=1 |bibcode=1929ZPhy...56....1H |doi=10.1007/BF01340129 |s2cid=121928597}}</ref><ref name="Heisenberg1930">
{{cite journal|last=Heisenberg|first=W.|authorlink=Werner Heisenberg|author2=Pauli, W. |authorlink2=Wolfgang Pauli |year=1930|title=Zur Quantentheorie der Wellenfelder|journal=]|volume=59|page=139|doi=10.1007/BF01341423|bibcode=1930ZPhy...59..168H|issue=3–4|language=de}}</ref><ref name="Fermi1932">{{cite journal|last=Fermi |first=E. |authorlink=Enrico Fermi |year=1932 |title=Quantum Theory of Radiation |journal=] |volume=4 |issue=1 |page=87 |doi=10.1103/RevModPhys.4.87 |bibcode=1932RvMP....4...87F}}</ref> earlier quantum mechanical treatments only treat material particles as quantum mechanical, not the electromagnetic field. {{cite journal |last1=Heisenberg |first1=Werner |author-link=Werner Heisenberg |last2=Pauli |first2=Wolfgang |author-link2=Wolfgang Pauli |year=1930 |title=Zur Quantentheorie der Wellenfelder |journal=] |language=de |volume=59 |issue=3–4 |page=139 |bibcode=1930ZPhy...59..168H |doi=10.1007/BF01341423 |s2cid=186219228}}</ref><ref name="Fermi1932">{{cite journal |last=Fermi |first=Enrico |author-link=Enrico Fermi |year=1932 |title=Quantum Theory of Radiation |journal=] |volume=4 |issue=1 |page=87 |bibcode=1932RvMP....4...87F |doi=10.1103/RevModPhys.4.87}}</ref> earlier quantum mechanical treatments only treat material particles as quantum mechanical, not the electromagnetic field.


Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the ''direction'' of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by ] in his treatment of ] and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in the light particle determined which of the two paths a single photon would take.<ref name="Newton1730" /> Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation<ref name="Pais1982" /> from quantum mechanics. Ironically, ]'s ] of the ]<ref name="Born1926a"> Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the ''direction'' of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by ] in his treatment of ] and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in the light particle determined which of the two paths a single photon would take.<ref name="Newton1730" /> Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation<ref name="Pais1982" /> from quantum mechanics. Ironically, ]'s ] of the ]<ref name="Born1926a">
{{cite journal|last=Born |first=M. |authorlink=Max Born |year=1926 |title=Zur Quantenmechanik der Stossvorgänge |journal=] |volume=37 |pages=863–867 |doi=10.1007/BF01397477 |bibcode=1926ZPhy...37..863B |issue=12 |language=de}}</ref><ref name="Born1926b">{{cite journal|last=Born|first=M.|authorlink=Max Born|year=1926|title=Quantenmechanik der Stossvorgänge|journal=]|volume=38|page=803|doi=10.1007/BF01397184|bibcode=1926ZPhy...38..803B|issue=11–12|language=de}}</ref> was inspired by Einstein's later work searching for a more complete theory.<ref name="ghost_field">{{cite book|last=Pais|first=A.|authorlink=Abraham Pais|year=1986|url={{google books |plainurl=y |id=mREnwpAqz-YC|page=260}}|page=260|title=Inward Bound: Of Matter and Forces in the Physical World|publisher=Oxford University Press|isbn=978-0-19-851997-3}} Specifically, Born claimed to have been inspired by Einstein's never-published attempts to develop a "ghost-field" theory, in which point-like photons are guided probabilistically by ghost fields that follow Maxwell's equations.</ref> {{cite journal |last=Born |first=Max |author-link=Max Born |year=1926 |title=Zur Quantenmechanik der Stossvorgänge |journal=] |language=de |volume=37 |issue=12 |pages=863–867 |bibcode=1926ZPhy...37..863B |doi=10.1007/BF01397477 |s2cid=119896026}}</ref><ref name="Born1926b">{{cite journal |last=Born |first=Max |author-link=Max Born |year=1926 |title=Quantenmechanik der Stossvorgänge |journal=] |language=de |volume=38 |issue=11–12 |page=803 |bibcode=1926ZPhy...38..803B |doi=10.1007/BF01397184 |s2cid=126244962}}</ref> was inspired by Einstein's later work searching for a more complete theory.<ref name="ghost_field">{{cite book|last=Pais|first=A.|author-link=Abraham Pais|year=1986|url={{google books |plainurl=y |id=mREnwpAqz-YC|page=260}}|page=260|title=Inward Bound: Of Matter and Forces in the Physical World|publisher=Oxford University Press|isbn=978-0-19-851997-3}} Specifically, Born claimed to have been inspired by Einstein's never-published attempts to develop a "ghost-field" theory, in which point-like photons are guided probabilistically by ghost fields that follow Maxwell's equations.</ref>


==Quantum field theory==
==Second quantization and high energy photon interactions==
===Quantization of the electromagnetic field===
{{Main article|Quantum field theory}}
{{Main|Quantum field theory}}
]. A photon corresponds to a unit of energy E=hν in its electromagnetic mode.]]
]. A photon corresponds to a unit of energy ''E''&nbsp;=&nbsp;''hν'' in its electromagnetic mode.]]


In 1910, ] derived ] from a relatively simple assumption.<ref name="Debye1910">{{cite journal|last=Debye|first=P.|authorlink=Peter Debye|year=1910|title=Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung|journal=]|volume=33|pages=1427–1434|doi=10.1002/andp.19103381617|bibcode=1910AnP...338.1427D|issue=16|language=de}}</ref> He correctly decomposed the electromagnetic field in a cavity into its ], and assumed that the energy in any mode was an integer multiple of <math>h\nu</math>, where <math>\nu</math> is the frequency of the electromagnetic mode. Planck's law of black-body radiation follows immediately as a geometric sum. However, Debye's approach failed to give the correct formula for the energy fluctuations of blackbody radiation, which were derived by Einstein in 1909.<ref name="Einstein1909" /> In 1910, ] derived ] from a relatively simple assumption.<ref name="Debye1910">{{cite journal |last=Debye |first=Peter |author-link=Peter Debye |year=1910 |title=Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung |url=https://zenodo.org/record/1424189 |journal=] |language=de |volume=33 |issue=16 |pages=1427–1434 |bibcode=1910AnP...338.1427D |doi=10.1002/andp.19103381617 |access-date=2019-08-25 |archive-date=2020-03-14 |archive-url=https://web.archive.org/web/20200314211718/https://zenodo.org/record/1424189 |url-status=live }}</ref> He decomposed the electromagnetic field in a cavity into its ], and assumed that the energy in any mode was an integer multiple of <math>h\nu</math>, where <math>\nu</math> is the frequency of the electromagnetic mode. Planck's law of black-body radiation follows immediately as a geometric sum. However, Debye's approach failed to give the correct formula for the energy fluctuations of black-body radiation, which were derived by Einstein in 1909.<ref name="Einstein1909" />

In 1925, ], ] and ] reinterpreted Debye's concept in a key way.<ref name="Born1925">{{cite journal|last=Born|first=M.|authorlink=Max Born|author2=]|author3=]|year=1925|title=Quantenmechanik II|journal=]|volume=35|pages=557–615|doi=10.1007/BF01379806|bibcode=1926ZPhy...35..557B|issue=8–9|language=de}}</ref> As may be shown classically, the ] of the ]—a complete set of electromagnetic plane waves indexed by their wave vector '''k''' and polarization state—are equivalent to a set of uncoupled ]s. Treated quantum mechanically, the energy levels of such oscillators are known to be <math>E=nh\nu</math>, where <math>\nu</math> is the oscillator frequency. The key new step was to identify an electromagnetic mode with energy <math>E=nh\nu</math> as a state with <math>n</math> photons, each of energy <math>h\nu</math>. This approach gives the correct energy fluctuation formula.
] (a ]) for all possible ways in which the event can occur, as in the ] shown here; the probability equals the square of the ] of the total amplitude.]]


In 1925, ], ] and ] reinterpreted Debye's concept in a key way.<ref name="Born1925">{{cite journal |last1=Born |first1=Max |author-link=Max Born |last2=Heisenberg |first2=Werner |author2-link=Werner Heisenberg |last3=Jordan |first3=Pascual |author3-link=Pascual Jordan |year=1925 |title=Quantenmechanik II |journal=] |language=de |volume=35 |issue=8–9 |pages=557–615 |bibcode=1926ZPhy...35..557B |doi=10.1007/BF01379806 |s2cid=186237037}}</ref> As may be shown classically, the ] of the ]—a complete set of electromagnetic plane waves indexed by their wave vector '''''k''''' and polarization state—are equivalent to a set of uncoupled ]s. Treated quantum mechanically, the energy levels of such oscillators are known to be <math>E=nh\nu</math>, where <math>\nu</math> is the oscillator frequency. The key new step was to identify an electromagnetic mode with energy <math>E=nh\nu</math> as a state with <math>n</math> photons, each of energy <math>h\nu</math>. This approach gives the correct energy fluctuation formula.
] of two electrons interacting by exchange of a virtual photon.]]
] took this one step further.<ref name="Dirac1927a" /><ref name="Dirac1927b" /> He treated the interaction between a charge and an electromagnetic field as a small perturbation that induces transitions in the photon states, changing the numbers of photons in the modes, while conserving energy and momentum overall. Dirac was able to derive Einstein's <math>A_{ij}</math> and <math>B_{ij}</math> coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in the opposite direction; he derived ] by ''assuming'' B–E statistics). In Dirac's time, it was not yet known that all bosons, including photons, must obey Bose–Einstein statistics. ] took this one step further.<ref name="Dirac1927a" /><ref name="Dirac1927b" /> He treated the interaction between a charge and an electromagnetic field as a small perturbation that induces transitions in the photon states, changing the numbers of photons in the modes, while conserving energy and momentum overall. Dirac was able to derive Einstein's <math>A_{ij}</math> and <math>B_{ij}</math> coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in the opposite direction; he derived ] by ''assuming'' B–E statistics). In Dirac's time, it was not yet known that all bosons, including photons, must obey Bose–Einstein statistics.


Dirac's second-order ] can involve ], transient intermediate states of the electromagnetic field; the static ] and ] interactions are mediated by such virtual photons. In such ], the ] of observable events is calculated by summing over ''all'' possible intermediate steps, even ones that are unphysical; hence, virtual photons are not constrained to satisfy <math>E=pc</math>, and may have extra ] states; depending on the ] used, virtual photons may have three or four polarization states, instead of the two states of real photons. Although these transient virtual photons can never be observed, they contribute measurably to the probabilities of observable events. Indeed, such second-order and higher-order perturbation calculations can give apparently ] contributions to the sum. Such unphysical results are corrected for using the technique of ]. Dirac's second-order ] can involve ], transient intermediate states of the electromagnetic field; the static ] and ] interactions are mediated by such virtual photons. In such ], the ] of observable events is calculated by summing over ''all'' possible intermediate steps, even ones that are unphysical; hence, virtual photons are not constrained to satisfy <math>E=pc</math>, and may have extra ] states; depending on the ] used, virtual photons may have three or four polarization states, instead of the two states of real photons. Although these transient virtual photons can never be observed, they contribute measurably to the probabilities of observable events.<ref>{{cite journal|last1=Jaeger|first1=Gregg|title=Are virtual particles less real?|journal=Entropy|volume=21|issue=2|page=141|date=2019|doi=10.3390/e21020141|pmid=33266857|pmc=7514619|bibcode=2019Entrp..21..141J|url=http://philsci-archive.pitt.edu/15858/1/Jaeger%20Are%20Virtual%20Particles%20Less%20Real_%20entropy-21-00141-v3.pdf|doi-access=free|access-date=2021-05-19|archive-date=2023-06-11|archive-url=https://web.archive.org/web/20230611010352/http://philsci-archive.pitt.edu/15858/1/Jaeger%20Are%20Virtual%20Particles%20Less%20Real_%20entropy-21-00141-v3.pdf|url-status=live}}</ref>

Indeed, such second-order and higher-order perturbation calculations can give apparently ] contributions to the sum. Such unphysical results are corrected for using the technique of ].<ref>{{Cite book |last=Zee |first=Anthony |title=] |date=2003 |publisher=] |isbn=0-691-01019-6 |location=Princeton, New Jersey |language=en-us |oclc=50479292 |author-link=Anthony Zee}}</ref>


Other virtual particles may contribute to the summation as well; for example, two photons may interact indirectly through virtual ]–] ].<ref>Photon-photon-scattering section 7-3-1, renormalization chapter 8-2 in {{Cite book|last=Itzykson|first=C.|last2=Zuber|first2=J.-B.|title=Quantum Field Theory|publisher=McGraw-Hill|year=1980|isbn=978-0-07-032071-0}}</ref> In fact, such photon–photon scattering (see ]), as well as electron–photon scattering, is meant to be one of the modes of operations of the planned particle accelerator, the ].<ref>{{Cite journal|last=Weiglein|first=G.|title=Electroweak Physics at the ILC|journal=]|volume=110|page=042033|year=2008|doi=10.1088/1742-6596/110/4/042033|bibcode=2008JPhCS.110d2033W|issue=4|arxiv = 0711.3003 }}</ref> Other virtual particles may contribute to the summation as well; for example, two photons may interact indirectly through virtual ]–] ].<ref>{{Cite book |last1=Itzykson |first1=C. |url=https://archive.org/details/quantumfieldtheo0000itzy |title=Quantum Field Theory |last2=Zuber |first2=J.-B. |publisher=McGraw-Hill |year=1980 |isbn=978-0-07-032071-0 |at=Photon–photon-scattering section 7–3–1, renormalization chapter 8–2 |url-access=registration}}</ref> Such photon–photon scattering (see ]), as well as electron–photon scattering, is meant to be one of the modes of operations of the planned particle accelerator, the ].<ref>{{Cite journal|last=Weiglein|first=G.|title=Electroweak Physics at the ILC|journal=]|volume=110|page=042033|year=2008|doi=10.1088/1742-6596/110/4/042033|bibcode=2008JPhCS.110d2033W|issue=4|arxiv = 0711.3003|s2cid=118517359}}</ref>


In ] notation, the ] of the electromagnetic field is written as a ], a ] of the states for each electromagnetic mode In ] notation, the ] of the electromagnetic field is written as a ], a ] of the states for each electromagnetic mode
Line 241: Line 240:
where <math>|n_{k_i}\rangle</math> represents the state in which <math>\, n_{k_i}</math> photons are in the mode <math>k_i</math>. In this notation, the creation of a new photon in mode <math>k_i</math> (e.g., emitted from an atomic transition) is written as <math>|n_{k_i}\rangle \rightarrow|n_{k_i}+1\rangle</math>. This notation merely expresses the concept of Born, Heisenberg and Jordan described above, and does not add any physics. where <math>|n_{k_i}\rangle</math> represents the state in which <math>\, n_{k_i}</math> photons are in the mode <math>k_i</math>. In this notation, the creation of a new photon in mode <math>k_i</math> (e.g., emitted from an atomic transition) is written as <math>|n_{k_i}\rangle \rightarrow|n_{k_i}+1\rangle</math>. This notation merely expresses the concept of Born, Heisenberg and Jordan described above, and does not add any physics.


===As a gauge boson===
==The hadronic properties of the photon==
{{Main|Gauge theory}}
Measurements of the interaction between energetic photons and ]s show that the interaction is much more intense than expected by the interaction of merely photons with the hadron's electric charge. Furthermore, the interaction of energetic photons with protons is similar to the interaction of photons with neutrons<ref>{{Cite journal | doi = 10.1103/RevModPhys.50.261| title = The hadronic properties of the photon in high-energy interactions| journal = Reviews of Modern Physics| volume = 50| issue = 2| pages = 261| year = 1978| last1 = Bauer | first1 = T.H.| last2 = Spital | first2 = R.D.| last3 = Yennie | first3 = D.R.| last4 = Pipkin | first4 = F.M.| bibcode = 1978RvMP...50..261B}}</ref> in spite of the fact that the electric charge structures of protons and neutrons are substantially different. A theory called ] (VMD) was developed to explain this effect. According to VMD, the photon is a superposition of the pure electromagnetic photon which interacts only with electric charges and vector mesons.<ref>{{Cite journal | doi = 10.1016/0003-4916(60)90126-3| title = Theory of strong interactions| journal = Annals of Physics| volume = 11| issue = 1| pages = 1–48| year = 1960| last1 = Sakurai | first1 = J.J. | bibcode = 1960AnPhy..11....1S}}</ref> However, if experimentally probed at very short distances, the intrinsic structure of the photon is recognized as a flux of quark and gluon components, quasi-free according to asymptotic freedom in ] and described by the ].<ref>{{Cite journal | doi = 10.1016/0370-2693(73)90520-0| title = Two-photon processes in the parton model| journal = ]| volume = 44| issue = 2| pages = 195| year = 1973| last1 = Walsh | first1 = T.F. | last2 = Zerwas | first2 = P.| bibcode = 1973PhLB...44..195W}}</ref><ref>{{Cite journal | doi = 10.1016/0550-3213(77)90038-4| title = Anomalous cross section for photon–photon scattering in gauge theories| journal = Nuclear Physics B| volume = 120| issue = 2| pages = 189–202| year = 1977| last1 = Witten | first1 = E. | bibcode = 1977NuPhB.120..189W}}</ref> A comprehensive comparison of data with theoretical predictions was presented in a review in 2000.<ref>{{Cite journal | doi = 10.1016/S0370-1573(99)00115-5| title = The photon structure from deep inelastic electron–photon scattering| journal = Physics Reports| volume = 332| issue = 4–6| pages = 165–317| year = 2000| last1 = Nisius | first1 = R. | bibcode = 2000PhR...332..165N|arxiv = hep-ex/9912049 }}</ref>


The electromagnetic field can be understood as a ], i.e., as a field that results from requiring that a gauge symmetry holds independently at every position in ].<ref name="Ryder">{{cite book |last=Ryder |first=L. H. |url={{google books |plainurl=y |id=nnuW_kVJ500C}} |title=Quantum field theory |publisher=Cambridge University Press |year=1996 |isbn=978-0-521-47814-4 |edition=2nd |location=England |language=en-uk}}</ref> For the ], this gauge symmetry is the ] ] of ]s of absolute value 1, which reflects the ability to vary the ] of a complex field without affecting ]s or ] made from it, such as the ] or the ].
==The photon as a gauge boson==
{{Main article|Gauge theory}}


The quanta of an ] must be massless, uncharged bosons, as long as the symmetry is not broken; hence, the photon is predicted to be massless, and to have zero ] and integer spin. The particular form of the ] specifies that the photon must have ] ±1; thus, its ] must be <math>\pm \hbar</math>. These two spin components correspond to the classical concepts of ] light. However, the transient ]s of ] may also adopt unphysical polarization states.<ref name="Ryder" />
The electromagnetic field can be understood as a ], i.e., as a field that results from requiring that a gauge symmetry holds independently at every position in ].<ref name="Ryder">{{cite book|last=Ryder|first=L.H.|year=1996|url={{google books |plainurl=y |id=nnuW_kVJ500C}}|title=Quantum field theory|edition=2nd|publisher=Cambridge University Press|isbn=978-0-521-47814-4}}</ref> For the ], this gauge symmetry is the ] ] of ]s of absolute value 1, which reflects the ability to vary the ] of a complex field without affecting ]s or ] made from it, such as the ] or the ].


In the prevailing ] of physics, the photon is one of four gauge bosons in the ]; the ] are denoted W<sup>+</sup>, W<sup>−</sup> and Z<sup>0</sup> and are responsible for the ]. Unlike the photon, these gauge bosons have ], owing to a ] that breaks their ]. The unification of the photon with W and Z gauge bosons in the electroweak interaction was accomplished by ], ] and ], for which they were awarded the 1979 ] in physics.<ref name="Glashow"> {{Webarchive|url=https://web.archive.org/web/20080418033045/http://nobelprize.org/nobel_prizes/physics/laureates/1979/glashow-lecture.html |date=2008-04-18 }}, delivered 8 December 1979.</ref><ref name="Salam"> {{Webarchive|url=https://web.archive.org/web/20080418033106/http://nobelprize.org/nobel_prizes/physics/laureates/1979/salam-lecture.html |date=2008-04-18 }}, delivered 8 December 1979.</ref><ref name="Weinberg"> {{Webarchive|url=https://web.archive.org/web/20080418033111/http://nobelprize.org/nobel_prizes/physics/laureates/1979/weinberg-lecture.html |date=2008-04-18 }}, delivered 8 December 1979.</ref> Physicists continue to hypothesize ] that connect these four gauge bosons with the eight ] gauge bosons of ]; however, key predictions of these theories, such as ], have not been observed experimentally.<ref>E.g., chapter 14 in {{cite book|last=Hughes|first=I.S.|title=Elementary particles|edition=2nd|publisher=Cambridge University Press|year=1985|isbn=978-0-521-26092-3|url=https://archive.org/details/elementarypartic00hugh}}</ref>
The quanta of an ] must be massless, uncharged bosons, as long as the symmetry is not broken; hence, the photon is predicted to be massless, and to have zero ] and integer spin. The particular form of the ] specifies that the photon must have ] ±1; thus, its ] must be <math>\pm \hbar</math>. These two spin components correspond to the classical concepts of ] light. However, the transient ]s of ] may also adopt unphysical polarization states.<ref name="Ryder" />


===Hadronic properties===
In the prevailing ] of physics, the photon is one of four ] in the ]; the ] are denoted W<sup>+</sup>, W<sup>−</sup> and Z<sup>0</sup> and are responsible for the ]. Unlike the photon, these gauge bosons have ], owing to a ] that breaks their ]. The unification of the photon with W and Z gauge bosons in the electroweak interaction was accomplished by ], ] and ], for which they were awarded the 1979 ] in physics.<ref name="Glashow">, delivered 8 December 1979.</ref><ref name="Salam">, delivered 8 December 1979.</ref><ref name="Weinberg">, delivered 8 December 1979.</ref> Physicists continue to hypothesize ] that connect these four ]s with the eight ] gauge bosons of ]; however, key predictions of these theories, such as ], have not been observed experimentally.<ref>E.g., chapter 14 in {{cite book|last=Hughes|first=I.S.|title=Elementary particles|edition=2nd|publisher=Cambridge University Press|year=1985|isbn=978-0-521-26092-3}}</ref>
{{main|Photon structure function}}
Measurements of the interaction between energetic photons and ]s show that the interaction is much more intense than expected by the interaction of merely photons with the hadron's electric charge. Furthermore, the interaction of energetic photons with protons is similar to the interaction of photons with neutrons<ref>{{cite journal |last1=Bauer |first1=T.H. |last2=Spital |first2=R.D. |last3=Yennie |first3=D. R. |last4=Pipkin |first4=F.M. |year=1978 |title=The hadronic properties of the photon in high-energy interactions |journal=] |volume=50 |issue=2 |page=261 |bibcode=1978RvMP...50..261B |doi=10.1103/RevModPhys.50.261 }}</ref> in spite of the fact that the electrical charge structures of protons and neutrons are substantially different. A theory called ] (VMD) was developed to explain this effect. According to VMD, the photon is a superposition of the pure electromagnetic photon, which interacts only with electric charges, and vector mesons, which mediate the residual ].<ref>{{cite journal |last=Sakurai |first=J.J. |year=1960 |title=Theory of strong interactions |journal=Annals of Physics |volume=11 |issue=1 |pages=1–48 |bibcode=1960AnPhy..11....1S |doi=10.1016/0003-4916(60)90126-3 }}</ref> However, if experimentally probed at very short distances, the intrinsic structure of the photon appears to have as components a charge-neutral flux of quarks and gluons, quasi-free according to asymptotic freedom in ]. That flux is described by the ].<ref>{{cite journal |last1=Walsh |first1=T.F. |last2=Zerwas |first2=P. |year=1973 |title=Two-photon processes in the parton model |journal=] |volume=44 |issue=2 |page=195 |bibcode=1973PhLB...44..195W |doi=10.1016/0370-2693(73)90520-0 }}</ref><ref>{{cite journal |last=Witten |first=E. |year=1977 |title=Anomalous cross section for photon–photon scattering in gauge theories |journal=] |volume=120 |issue=2 |pages=189–202 |bibcode=1977NuPhB.120..189W |doi=10.1016/0550-3213(77)90038-4 }}</ref> A review by {{harvp|Nisius|2000}} presented a comprehensive comparison of data with theoretical predictions.<ref>{{cite journal |last=Nisius |first=R. |year=2000 |title=The photon structure from deep inelastic electron–photon scattering |journal=] |volume=332 |issue=4–6 |pages=165–317 |bibcode=2000PhR...332..165N |arxiv=hep-ex/9912049 |s2cid=119437227 |doi=10.1016/S0370-1573(99)00115-5 }}</ref>


==Contributions to the mass of a system== ===Contributions to the mass of a system===
{{See also|Mass in special relativity|Mass in general relativity}} {{See also|Mass in special relativity|Mass in general relativity}}
The energy of a system that emits a photon is ''decreased'' by the energy <math>E</math> of the photon as measured in the rest frame of the emitting system, which may result in a reduction in mass in the amount <math>{E}/{c^2}</math>. Similarly, the mass of a system that absorbs a photon is ''increased'' by a corresponding amount. As an application, the energy balance of nuclear reactions involving photons is commonly written in terms of the masses of the nuclei involved, and terms of the form <math>{E}/{c^2}</math> for the gamma photons (and for other relevant energies, such as the recoil energy of nuclei).<ref>E.g., section 10.1 in {{Cite book|last=Dunlap|first=R.A.|title=An Introduction to the Physics of Nuclei and Particles|publisher=]|year=2004|isbn=978-0-534-39294-9}}</ref> The energy of a system that emits a photon is ''decreased'' by the energy <math>E</math> of the photon as measured in the rest frame of the emitting system, which may result in a reduction in mass in the amount <math>{E}/{c^2}</math>. Similarly, the mass of a system that absorbs a photon is ''increased'' by a corresponding amount. As an application, the energy balance of nuclear reactions involving photons is commonly written in terms of the masses of the nuclei involved, and terms of the form <math>{E}/{c^2}</math> for the gamma photons (and for other relevant energies, such as the recoil energy of nuclei).<ref>E.g., section 10.1 in {{Cite book |last=Dunlap |first=R. A. |title=An Introduction to the Physics of Nuclei and Particles |publisher=] |year=2004 |isbn=978-0-534-39294-9 |language=en}}</ref>


This concept is applied in key predictions of ] (QED, see above). In that theory, the mass of electrons (or, more generally, leptons) is modified by including the mass contributions of virtual photons, in a technique known as ]. Such "]s" contribute to a number of predictions of QED, such as the ] of ]s, the ], and the ] of bound lepton pairs, such as ] and ].<ref>Radiative correction to electron mass section 7-1-2, anomalous magnetic moments section 7-2-1, Lamb shift section 7-3-2 and hyperfine splitting in positronium section 10-3 in {{Cite book|last=Itzykson|first=C.|last2=Zuber|first2=J.-B.|title=Quantum Field Theory|publisher=McGraw-Hill|year=1980|isbn=978-0-07-032071-0}}</ref> This concept is applied in key predictions of ] (QED, see above). In that theory, the mass of electrons (or, more generally, leptons) is modified by including the mass contributions of virtual photons, in a technique known as ]. Such "]s" contribute to a number of predictions of QED, such as the ] of ]s, the ], and the ] of bound lepton pairs, such as ] and ].<ref>Radiative correction to electron mass section 7–1–2, anomalous magnetic moments section 7–2–1, Lamb shift section 7–3–2 and hyperfine splitting in positronium section 10–3 in {{Cite book |last1=Itzykson |first1=C. |url=https://archive.org/details/quantumfieldtheo0000itzy |title=Quantum Field Theory |last2=Zuber |first2=J.-B. |publisher=McGraw-Hill |year=1980 |isbn=978-0-07-032071-0 |url-access=registration}}</ref>


Since photons contribute to the ], they exert a ] on other objects, according to the theory of ]. Conversely, photons are themselves affected by gravity; their normally straight trajectories may be bent by warped ], as in ]ing, and ] by moving to a higher ], as in the ]. However, these effects are not specific to photons; exactly the same effects would be predicted for classical ].<ref>E.g. sections 9.1 (gravitational contribution of photons) and 10.5 (influence of gravity on light) in {{Cite book|last=Stephani|first=H.|url={{google books |plainurl=y |id=V04_vLQvstcC|page=86}}|last2=Stewart|first2=J.|pages=86 ff, 108 ff|title=General Relativity: An Introduction to the Theory of Gravitational Field|isbn=978-0-521-37941-0|publisher=Cambridge University Press|year=1990}}</ref> Since photons contribute to the ], they exert a ] on other objects, according to the theory of ]. Conversely, photons are themselves affected by gravity; their normally straight trajectories may be bent by warped ], as in ]ing, and ] by moving to a higher ], as in the ]. However, these effects are not specific to photons; exactly the same effects would be predicted for classical ].<ref>E.g. sections 9.1 (gravitational contribution of photons) and 10.5 (influence of gravity on light) in {{Cite book|last1=Stephani|first1=H.|url={{google books |plainurl=y |id=V04_vLQvstcC|page=86}}|last2=Stewart|first2=J.|pages=86 ff, 108 ff|title=General Relativity: An Introduction to the Theory of Gravitational Field|isbn=978-0-521-37941-0|publisher=Cambridge University Press|year=1990}}</ref>


==Photons in matter== ==In matter==
{{See also|Group velocity|Photochemistry}} {{See also|Refractive index|Group velocity|Photochemistry}}


Light that travels through transparent matter does so at a lower speed than ''c'', the speed of light in vacuum. The factor by which the speed is decreased is called the ] of the material. In a classical wave picture, the slowing can be explained by the light inducing ] in the matter, the polarized matter radiating new light, and that new light interfering with the original light wave to form a delayed wave. In a particle picture, the slowing can instead be described as a blending of the photon with quantum excitations of the matter to produce ]s known as ]. Polaritons have a nonzero ], which means that they cannot travel at ''c''. Light of different frequencies may travel through matter at ]; this is called ] (not to be confused with scattering). In some cases, it can result in ] in matter. The effects of photon interactions with other quasi-particles may be observed directly in ] and ].<ref>Polaritons section 10.10.1, Raman and Brillouin scattering section 10.11.3 in {{Cite book |last1=Patterson |first1=J. D. |title=Solid-State Physics: Introduction to the Theory |last2=Bailey |first2=B. C. |publisher=] |year=2007 |isbn=978-3-540-24115-7 |language=en}}</ref>
Light that travels through transparent matter does so at a lower speed than ''c'', the speed of light in a vacuum. For example, photons engage in so many collisions on the way from the ] of the sun that radiant energy can take about a million years to reach the surface;<ref>
{{cite book| title = Through the Eyes of Hubble: Birth, Life and Violent Death of Stars|first=R.|last=Naeye|publisher=CRC Press|year=1998|isbn=978-0-7503-0484-9|url={{google books |plainurl=y |id=06_9B7S_q_YC|page=16}}|oclc=40180195}}</ref> however, once in open space, a photon takes only 8.3 minutes to reach Earth. The factor by which the speed is decreased is called the ] of the material. In a classical wave picture, the slowing can be explained by the light inducing ] in the matter, the polarized matter radiating new light, and that new light interfering with the original light wave to form a delayed wave. In a particle picture, the slowing can instead be described as a blending of the photon with quantum excitations of the matter to produce ]s known as ] (other quasi-particles are ]s and ]s); this polariton has a nonzero ], which means that it cannot travel at ''c''. Light of different frequencies may travel through matter at ]; this is called ] (not to be confused with scattering). In some cases, it can result in ] in matter. The effects of photon interactions with other quasi-particles may be observed directly in ] and ].<ref>Polaritons section 10.10.1, Raman and Brillouin scattering section 10.11.3 in {{Cite book | last = Patterson | first=J.D. | last2 = Bailey | first2=B.C.| title = Solid-State Physics: Introduction to the Theory| publisher=]| year=2007| isbn=978-3-540-24115-7}}</ref>


Photons can be scattered by matter. For example, photons scatter so many times in the solar ] after leaving the ] that ] takes about a million years to reach the ].<ref>{{Cite web |title=The Solar Interior |url=https://solarscience.msfc.nasa.gov/interior.shtml |work=Marshall Space Flight Center: Solar Physics |publisher=National Aeronautics and Space Commission |access-date=4 December 2024}}</ref> However, photons emitted from the sun's ] take only 8.3 minutes to reach Earth.<ref>{{Cite book |last1 = Koupelis |first1 = Theo |last2 = Kuhn |first2 = Karl F. |year = 2007 |url = https://books.google.com/books?id=6rTttN4ZdyoC&pg=PA102 |title = In Quest of the Universe |page = 102 |publisher = Jones and Bartlett Canada |isbn = 9780763743871 |access-date = 2020-11-29 |archive-date = 2024-05-12 |archive-url = https://web.archive.org/web/20240512231402/https://books.google.com/books?id=6rTttN4ZdyoC&pg=PA102#v=onepage&q&f=false |url-status = live }}</ref>
Photons can also be ] by nuclei, atoms or molecules, provoking transitions between their ]s. A classic example is the molecular transition of ] (C<sub>20</sub>H<sub>28</sub>O), which is responsible for ], as discovered in 1958 by Nobel laureate ] ] and co-workers. The absorption provokes a ] ] that, in combination with other such transitions, is transduced into nerve impulses. The absorption of photons can even break chemical bonds, as in the ] of ]; this is the subject of ].<ref>E.g. section 11-5 C in {{Cite book|last=Pine|first=S.H.|last2=Hendrickson |first2=J.B.|last3=Cram |first3=D.J.|last4=Hammond |first4=G.S.|title=Organic Chemistry|edition=4th|publisher=McGraw-Hill|year=1980|isbn=978-0-07-050115-7}}</ref><ref>Nobel lecture given by G. Wald on December 12, 1967, online at nobelprize.org: .</ref>

Photons can also be ] by nuclei, atoms or molecules, provoking transitions between their ]s. A classic example is the molecular transition of ] (C<sub>20</sub>H<sub>28</sub>O), which is responsible for ], as discovered in 1958 by Nobel laureate ] ] and co-workers. The absorption provokes a ] ] that, in combination with other such transitions, is transduced into nerve impulses. The absorption of photons can even break chemical bonds, as in the ] of ]; this is the subject of ].<ref>E.g. section 11-5 C in {{Cite book |last1=Pine |first1=S. H. |title=Organic Chemistry |last2=Hendrickson |first2=J. B. |last3=Cram |first3=D. J. |last4=Hammond |first4=G. S. |publisher=McGraw-Hill |year=1980 |isbn=978-0-07-050115-7 |edition=4th |language=en}}</ref><ref>Nobel lecture given by G. Wald on December 12, 1967, online at nobelprize.org: {{Webarchive|url=https://web.archive.org/web/20160423182216/http://www.nobelprize.org/nobel_prizes/medicine/laureates/1967/wald-lecture.html |date=2016-04-23 }}.</ref>


==Technological applications== ==Technological applications==
Photons have many applications in technology. These examples are chosen to illustrate applications of photons ''per se'', rather than general optical devices such as lenses, etc. that could operate under a classical theory of light. The laser is an extremely important application and is discussed above under ]. Photons have many applications in technology. These examples are chosen to illustrate applications of photons ''per se'', rather than general optical devices such as lenses, etc. that could operate under a classical theory of light. The laser is an important application and is discussed above under ].


Individual photons can be detected by several methods. The classic ] tube exploits the ]: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. ] ] chips use a similar effect: an incident photon generates a charge on a microscopic ] that can be detected. Other detectors such as ]s use the ability of photons to ] gas molecules contained in the device, causing a detectable change of ] of the gas.<ref>Photomultiplier section 1.1.10, CCDs section 1.1.8, Geiger counters section 1.3.2.1 in {{cite book|first=C.R.|last=Kitchin|title=Astrophysical Techniques|publisher=CRC Press|location=Boca Raton, FL|year=2008|isbn=978-1-4200-8243-2}}</ref> Individual photons can be detected by several methods. The classic ] tube exploits the ]: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. ] ] chips use a similar effect: an incident photon generates a charge on a microscopic ] that can be detected. Other detectors such as ]s use the ability of photons to ] gas molecules contained in the device, causing a detectable change of ] of the gas.<ref>Photomultiplier section 1.1.10, CCDs section 1.1.8, Geiger counters section 1.3.2.1 in {{cite book |last=Kitchin |first=C. R. |title=Astrophysical Techniques |publisher=CRC Press |year=2008 |isbn=978-1-4200-8243-2 |location=Boca Raton, Florida |language=en-us}}</ref>


Planck's energy formula <math>E=h\nu</math> is often used by engineers and chemists in design, both to compute the change in energy resulting from a photon absorption and to determine the frequency of the light emitted from a given photon emission. For example, the ] of a ] can be altered by filling it with (mixtures of) gases with different electronic ] configurations. Planck's energy formula <math>E=h\nu</math> is often used by engineers and chemists in design, both to compute the change in energy resulting from a photon absorption and to determine the frequency of the light emitted from a given photon emission. For example, the ] of a ] can be altered by filling it with (mixtures of) gases with different electronic ] configurations.<ref>{{cite book |last=Waymouth |first=John |url=https://archive.org/details/electricdischarg00waym |title=Electric Discharge Lamps |date=1971 |publisher=The M.I.T. Press |isbn=978-0-262-23048-3 |location=Cambridge, Massachusetts |language=en-us |url-access=registration}}</ref>


Under some conditions, an energy transition can be excited by "two" photons that individually would be insufficient. This allows for higher resolution microscopy, because the sample absorbs energy only in the spectrum where two beams of different colors overlap significantly, which can be made much smaller than the excitation volume of a single beam (see ]). Moreover, these photons cause less damage to the sample, since they are of lower energy.<ref>{{cite journal|author1=Denk, W. |author2=Svoboda, K. |title=Photon upmanship: Why multiphoton imaging is more than a gimmick|journal=]|volume=18|issue=3|pages=351–357|year=1997|pmid=9115730|doi=10.1016/S0896-6273(00)81237-4}}</ref> Under some conditions, an energy transition can be excited by "two" photons that individually would be insufficient. This allows for higher resolution microscopy, because the sample absorbs energy only in the spectrum where two beams of different colors overlap significantly, which can be made much smaller than the excitation volume of a single beam (see ]). Moreover, these photons cause less damage to the sample, since they are of lower energy.<ref>{{cite journal|author1=Denk, W. |author1-link=Winfried Denk|author2-link=Karel Svoboda (scientist)|author2=Svoboda, K. |title=Photon upmanship: Why multiphoton imaging is more than a gimmick|journal=]|volume=18|issue=3|pages=351–357|year=1997|pmid=9115730|doi=10.1016/S0896-6273(00)81237-4|s2cid=2414593 |doi-access=free}}</ref>


In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of ], a technique that is used in ] to study the interaction of suitable ]s.<ref>{{Cite book|first=J.R.|last=Lakowicz|url={{google books |plainurl=y |id=-PSybuLNxcAC|page=529}}|title=Principles of Fluorescence Spectroscopy|pages=529 ff|publisher=Springer|year=2006|isbn=978-0-387-31278-1}}</ref> In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of ], a technique that is used in ] to study the interaction of suitable ]s.<ref>{{Cite book |last=Lakowicz |first=J. R. |url={{google books |plainurl=y |id=-PSybuLNxcAC|page=529}} |title=Principles of Fluorescence Spectroscopy |publisher=Springer |year=2006 |isbn=978-0-387-31278-1 |pages=529 ff |language=en}}</ref>


Several different kinds of ]s involve the detection of single photons. In one example, for each bit in the random sequence that is to be produced, a photon is sent to a ]. In such a situation, there are two possible outcomes of equal probability. The actual outcome is used to determine whether the next bit in the sequence is "0" or "1".<ref>{{Cite journal|first=T.|last=Jennewein|first2=U.|last2=Achleitner|first3=G.|last3=Weihs|first4=H.|last4=Weinfurter|first5=A.|last5=Zeilinger|title=A fast and compact quantum random number generator|doi=10.1063/1.1150518|journal=]|volume=71|pages=1675–1680|year=2000|arxiv=quant-ph/9912118|bibcode=2000RScI...71.1675J|issue=4 }}</ref><ref>{{Cite journal|first=A.|last=Stefanov|first2=N.|last2=Gisin|first3=O.|last3=Guinnard|first4=L.|last4=Guinnard|first5=H.|last5=Zbiden|title=Optical quantum random number generator|journal=]|volume=47|pages=595–598|year=2000|doi=10.1080/095003400147908|issue=4}}</ref> Several different kinds of ]s involve the detection of single photons. In one example, for each bit in the random sequence that is to be produced, a photon is sent to a ]. In such a situation, there are two possible outcomes of equal probability. The actual outcome is used to determine whether the next bit in the sequence is "0" or "1".<ref>{{Cite journal|first1=T.|last1=Jennewein|first2=U.|last2=Achleitner|first3=G.|last3=Weihs|first4=H.|last4=Weinfurter|first5=A.|last5=Zeilinger|title=A fast and compact quantum random number generator|doi=10.1063/1.1150518|journal=]|volume=71|pages=1675–1680|year=2000|arxiv=quant-ph/9912118|bibcode=2000RScI...71.1675J|issue=4 |s2cid=13118587}}</ref><ref>{{Cite journal|first1=A.|last1=Stefanov|first2=N.|last2=Gisin|first3=O.|last3=Guinnard|first4=L.|last4=Guinnard|first5=H.|last5=Zbiden|title=Optical quantum random number generator|journal=]|volume=47|pages=595–598|year=2000|doi=10.1080/095003400147908|issue=4}}</ref>


==Quantum optics and computation==
==Recent research==
Much research has been devoted to applications of photons in the field of ]. Photons seem well-suited to be elements of an extremely fast ], and the ] of photons is a focus of research. ] are another active research area, with topics such as ], ], ] and ]s. However, such processes generally do not require the assumption of photons ''per se''; they may often be modeled by treating atoms as nonlinear oscillators. The nonlinear process of ] is often used to produce single-photon states. Finally, photons are essential in some aspects of ], especially for ].<ref>
{{See also|Quantum optics}}
Introductory-level material on the various sub-fields of quantum optics can be found in {{cite book |last=Fox |first=M. |url={{google books |id=Q-4dIthPuL4C |plainurl=y}} |title=Quantum Optics: An introduction |publisher=Oxford University Press |year=2006 |isbn=978-0-19-856673-1 |via=Google Books}}
</ref>


] studies interactions between photons, which are rare. In 2018, Massachusetts Institute of Technology researchers announced the discovery of bound photon triplets, which may involve ]s.<ref name="NW-20180216">{{cite news |last=Hignett |first=Katherine |date=16 February 2018 |title=Physics creates new form of light that could drive the quantum computing revolution |magazine=] |url=http://www.newsweek.com/photons-light-physics-808862 |access-date=17 February 2018 |archive-date=25 April 2021 |archive-url=https://web.archive.org/web/20210425041617/https://www.newsweek.com/photons-light-physics-808862 |url-status=live }}</ref><ref name="SCI-20180216">{{cite journal |last1=Liang |first1=Qi-Yu |display-authors=etal |date=16 February 2018 |title=Observation of three-photon bound states in a quantum nonlinear medium |journal=] |volume=359 |issue=6377 |pages=783–786 |doi=10.1126/science.aao7293 |pmid=29449489 |pmc=6467536 |arxiv=1709.01478 |bibcode=2018Sci...359..783L }}</ref>
Much research has been devoted to applications of photons in the field of ]. Photons seem well-suited to be elements of an extremely fast ], and the ] of photons is a focus of research. ] are another active research area, with topics such as ], ], ] and ]s. However, such processes generally do not require the assumption of photons ''per se''; they may often be modeled by treating atoms as nonlinear oscillators. The nonlinear process of ] is often used to produce single-photon states. Finally, photons are essential in some aspects of ], especially for ].{{efn|Introductory-level material on the various sub-fields of quantum optics can be found in {{Cite book
|last=Fox|first=M.
|title=Quantum Optics: An Introduction
|publisher=Oxford University Press
|year=2006|url={{google books |plainurl=y |id=Q-4dIthPuL4C}}
|isbn=978-0-19-856673-1
}}}}

] studies interactions between photons, which are rare. In 2018, MIT researchers announced the discovery of bound photon triplets, which may involve ]s.<ref name="NW-20180216">{{cite web |last=Hignett |first=Katherine |title=Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution |url=http://www.newsweek.com/photons-light-physics-808862 |date=16 February 2018 |work=Newsweek |accessdate=17 February 2018 }}</ref><ref name="SCI-20180216">{{cite journal |author=Liang, Qi-Yu |display-authors=etal |title=Observation of three-photon bound states in a quantum nonlinear medium |url=http://science.sciencemag.org/content/359/6377/783 |date=16 February 2018 |journal=] |volume=359 |issue=6377 |pages=783–786 |doi=10.1126/science.aao7293 |pmid=29449489 |accessdate=17 February 2018 |arxiv=1709.01478 |bibcode=2018Sci...359..783L }}</ref>


==See also== ==See also==
{{Portal|Physics}} {{Portal|Physics}}
{{cmn|colwidth=22em| {{div col |colwidth=15em |content=

* ] at Argonne National Laboratory
* ] at&nbsp;Argonne National Laboratory
* ] * ]
* ] * ]
* ] * ]
* ]
* ] * ]
* ] * ]
* ]
* ]
* ] * ]
* ] * ]
Line 312: Line 305:
* ] * ]
* ] * ]
* ]
* ] * ]
* ]
* ] * ]
* ] * ]
* ] * ]
* ] * ]
* ] * ]

}}
}} <!-- end "content=" -->


==Notes== ==Notes==
Line 327: Line 319:


==References== ==References==
{{Reflist}} {{reflist|25em}}


==Further reading== ==Further reading==
<!-- Ordered by date published; two general histories cited at end --> <!-- Ordered by date published; two general histories cited at end -->
{{refbegin}} {{refbegin}}
;By date of publication:

* {{cite book |last1=Alonso |first1=M. |last2=Finn |first2=E. J. |year=1968 |title=Fundamental University Physics |volume=III: Quantum and Statistical Physics |language=en |publisher=Addison-Wesley |isbn=978-0-201-00262-1}}
By date of publication:
* {{cite journal |last=Clauser |first=J. F. |year=1974 |title=Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect |journal=] |volume=9 |issue=4 |pages=853–860 |doi=10.1103/PhysRevD.9.853 |bibcode=1974PhRvD...9..853C |s2cid=118320287 |url=http://www.escholarship.org/uc/item/3wm0v847 |access-date=2019-01-03 |archive-date=2019-01-24 |archive-url=https://web.archive.org/web/20190124203753/https://escholarship.org/uc/item/3wm0v847 |url-status=live }}
* {{Cite book|last=Alonso|first=M.|last2=Finn|first2=E.J.|title=Fundamental University Physics Volume III: Quantum and Statistical Physics|publisher=Addison-Wesley|year=1968|isbn=978-0-201-00262-1|ref=harv}}
* {{cite book |last=Pais |first=Abraham |author-link=Abraham Pais |year=1982 |language=en |title=] |publisher=Oxford University Press}}
* {{Cite journal|last=Clauser|first=J.F.|year=1974|title=Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect|journal=]|volume=9|pages=853–860|doi=10.1103/PhysRevD.9.853|bibcode=1974PhRvD...9..853C|issue=4|url=http://www.escholarship.org/uc/item/3wm0v847}}
* {{Cite book|last=Pais|first=A.|authorlink=Abraham Pais|year=1982|title=Subtle is the Lord: The Science and the Life of Albert Einstein|publisher=Oxford University Press}} * {{cite book |last=Feynman |first=Richard |author-link=Richard Feynman |year=1985 |isbn=978-0-691-12575-6 |language=en-us |title=QED: The Strange Theory of Light and Matter |publisher=Princeton University Press |title-link=QED: The Strange Theory of Light and Matter}}
* {{cite journal |last1=Grangier |first1=P. |last2=Roger |first2=G. |last3=Aspect |first3=A. |year=1986 |title=Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences |journal=] |volume=1 |issue=4 |pages=173–179 |doi=10.1209/0295-5075/1/4/004 |bibcode=1986EL......1..173G |citeseerx=10.1.1.178.4356 |s2cid=250837011}}
* {{cite book |last=Feynman |first=Richard |authorlink=Richard Feynman |year=1985 |isbn=978-0-691-12575-6 |title=QED: The Strange Theory of Light and Matter |publisher=Princeton University Press|title-link=QED: The Strange Theory of Light and Matter }}
* {{Cite journal|last=Grangier|first=P.|last2=Roger|first2=G.|last3=Aspect|first3=A.|year=1986|title=Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences|journal=]|volume=1|pages=173–179|doi=10.1209/0295-5075/1/4/004|bibcode=1986EL......1..173G|issue=4|citeseerx=10.1.1.178.4356}} * {{cite journal |last=Lamb |first=Willis E. |author-link=Willis Lamb |year=1995 |title=Anti-photon |journal=] |volume=60 |issue=2–3 |pages=77–84 |doi=10.1007/BF01135846 |bibcode=1995ApPhB..60...77L|s2cid=263785760 }}
* {{cite magazine |title=Special supplemental issue |magazine=Optics and Photonics News |volume=14 |date=October 2003 |url=http://www.sheffield.ac.uk/polopoly_fs/1.14183!/file/photon.pdf |archive-url=https://web.archive.org/web/20220605130152/http://www.sheffield.ac.uk/polopoly_fs/1.14183!/file/photon.pdf |archive-date=June 5, 2022 }}
* {{Cite journal|last=Lamb|first=W.E.|authorlink=Willis Lamb|year=1995|title=Anti-photon|journal=]|volume=60|pages=77–84|doi=10.1007/BF01135846|bibcode=1995ApPhB..60...77L|issue=2–3}}
** {{cite magazine |last1=Roychoudhuri |first1=C. |last2=Rajarshi |first2=R. |year=2003 |title=The nature of light: What is a photon? |magazine=] |volume=14 |pages=S1 (Supplement)}}
* Special supplemental issue of ''Optics and Photonics News'' (vol. 14, October 2003)
** {{cite journal|last=Roychoudhuri|first=C.|last2=Rajarshi|first2=R.|title=The nature of light: what is a photon?|journal=]|volume=14|pages=S1 (Supplement)|year=2003}} ** {{cite magazine |last=Zajonc |first=A. |year=2003 |title=Light reconsidered |magazine=] |volume=14 |pages=S2–S5 (Supplement)}}
** {{cite journal|last=Zajonc|first=A.|title=Light reconsidered|journal=]|volume=14|pages=S2–S5 (Supplement)}} ** {{cite magazine |last=Loudon |first=R. |year=2003 |title=What is a photon? |magazine=] |volume=14 |pages=S6–S11 (Supplement)}}
** {{cite journal|last=Loudon|first=R.|title=What is a photon?|journal=]|volume=14|pages=S6–S11 (Supplement)}} ** {{cite magazine |last=Finkelstein |first=D. |year=2003 |title=What is a photon? |magazine=] |volume=14 |pages=S12–S17 (Supplement)}}
** {{cite journal|last=Finkelstein|first=D.|title=What is a photon?|journal=]|volume=14|pages=S12–S17 (Supplement)}} ** {{cite magazine |last1=Muthukrishnan |first1=A. |last2=Scully |first2=M. O. |last3=Zubairy |first3=M. S. |year=2003 |title=The concept of the photon – revisited |magazine=] |volume=14 |pages=S18–S27 (Supplement)}}
** {{cite journal|last=Muthukrishnan|first=A.|last2=Scully|first2=M.O.|last3=Zubairy|first3=M.S.|title=The concept of the photon revisited|journal=]|volume=14|pages=S18–S27 (Supplement)}} ** {{cite magazine |last1=Mack |first1=H. |last2=Schleich |author-link2=Wolfgang P. Schleich |first2=Wolfgang P. |year=2003 |title=A photon viewed from Wigner phase space |magazine=] |volume=14 |pages=S28–S35 (Supplement)}}
* {{cite web |last=Glauber |first=R. |year=2005 |title=One Hundred Years of Light Quanta |series=Physics Lecture |website=Nobel Prize |url=http://nobelprize.org/nobel_prizes/physics/laureates/2005/glauber-lecture.pdf |access-date=2009-06-29 |archive-url=https://web.archive.org/web/20080723150609/http://nobelprize.org/nobel_prizes/physics/laureates/2005/glauber-lecture.pdf |archive-date=2008-07-23 |url-status=dead }}
** {{cite journal|last=Mack|first=H.|last2=Schleich|authorlink2=Wolfgang P. Schleich|first2=W.P.|title=A photon viewed from Wigner phase space|journal=]|volume=14|pages=S28–S35 (Supplement)}}
* {{cite web|last=Glauber|first=R.|title=One Hundred Years of Light Quanta|work=2005 Physics Nobel Prize Lecture|url=http://nobelprize.org/nobel_prizes/physics/laureates/2005/glauber-lecture.pdf|year=2005|access-date=2009-06-29|archive-url=https://web.archive.org/web/20080723150609/http://nobelprize.org/nobel_prizes/physics/laureates/2005/glauber-lecture.pdf|archive-date=2008-07-23|dead-url=yes|df=}} * {{Cite journal |last=Hentschel |first=K. |year=2007 |title=Light quanta: The maturing of a concept by the stepwise accretion of meaning |url=https://eldorado.tu-dortmund.de/handle/2003/24257 |journal=Physics and Philosophy |volume=1 |issue=2 |pages=1–20 |access-date=2014-06-29 |archive-date=2014-05-29 |archive-url=https://web.archive.org/web/20140529085134/https://eldorado.tu-dortmund.de/handle/2003/24257 |url-status=live }}
;Education with single photons:
* {{Cite journal|last=Hentschel|first=K.|year=2007|title=Light quanta: The maturing of a concept by the stepwise accretion of meaning|url=https://eldorado.tu-dortmund.de/handle/2003/24257|journal=Physics and Philosophy|volume=1|pages=1–20|issue=2}}
* {{cite journal |last1=Thorn |first1=J. J. |last2=Neel |first2=M. S. |last3=Donato |first3=V. W. |last4=Bergreen |first4=G. S. |last5=Davies |first5=R. E. |last6=Beck |first6=M. |year=2004 |title=Observing the quantum behavior of light in an undergraduate laboratory |journal=] |volume=72 |issue=9 |pages=1210–1219 |doi=10.1119/1.1737397 |bibcode=2004AmJPh..72.1210T |url=http://people.whitman.edu/~beckmk/QM/grangier/Thorn_ajp.pdf |access-date=2009-06-29 |archive-date=2016-02-01 |archive-url=https://web.archive.org/web/20160201214040/http://people.whitman.edu/~beckmk/QM/grangier/Thorn_ajp.pdf |url-status=live }}
Education with single photons:
* {{Cite journal|last=Thorn|first=J.J.|last2=Neel|first2=M.S.|last3=Donato|first3=V.W.|last4=Bergreen|first4=G.S.|last5=Davies|first5=R.E.|last6=Beck|year=2004|title=Observing the quantum behavior of light in an undergraduate laboratory|url=http://people.whitman.edu/~beckmk/QM/grangier/Thorn_ajp.pdf|journal=]|volume=72|pages=1210–1219|doi=10.1119/1.1737397|first6=M.|bibcode=2004AmJPh..72.1210T|issue=9}} * {{cite journal |last1=Bronner |first1=P. |last2=Strunz |first2=Andreas |last3=Silberhorn |first3=Christine |last4=Meyn |first4=Jan-Peter |year=2009 |title=Interactive screen experiments with single photons |journal=] |volume=30 |issue=2 |pages=345–353 |doi=10.1088/0143-0807/30/2/014 |bibcode=2009EJPh...30..345B |s2cid=38626417 |url=http://www.quantumlab.de/ |access-date=2009-07-17 |archive-date=2019-07-01 |archive-url=https://web.archive.org/web/20190701002242/http://www.quantumlab.de/ |url-status=live }}
* {{Cite journal|last=Bronner|first=P.|last2=Strunz|year=2009|title=Interactive screen experiments with single photons|url=http://www.QuantumLab.de|journal=]|volume=30|pages=345–353|doi=10.1088/0143-0807/30/2/014|first2=Andreas|last3=Silberhorn|first3=Christine|last4=Meyn|first4=Jan-Peter|bibcode=2009EJPh...30..345B|issue=2}}

{{refend}} {{refend}}


Line 362: Line 352:
{{Particles}} {{Particles}}
{{QED}} {{QED}}

{{Featured article}}

{{Authority control}} {{Authority control}}


]
] ]
] ]
Line 373: Line 361:
] ]
] ]
]
]

Latest revision as of 19:41, 19 December 2024

Elementary particle or quantum of light This article is about the elementary particle or quantum of light. For other uses, see Photon (disambiguation).
Photon
CompositionElementary particle
StatisticsBosonic
FamilyGauge boson
InteractionsElectromagnetic, weak (and gravity)
Symbol γ
TheorizedAlbert Einstein (1905)
The name "photon" is generally attributed to Gilbert N. Lewis (1926)
Mass0 (theoretical value)
< 1×10 eV/c (experimental limit)
Mean lifetimeStable
Electric charge0
< 1×10 e
Color chargeNo
Spinħ
Spin states+1 ħ,  −1 ħ
Parity−1
C parity−1
CondensedI(J)=0,1(1)

A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can move no faster than the speed of light measured in vacuum. The photon belongs to the class of boson particles.

As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While Planck was trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, he proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. Subsequently, many other experiments validated Einstein's approach.

In the Standard Model of particle physics, photons and other elementary particles are described as a necessary consequence of physical laws having a certain symmetry at every point in spacetime. The intrinsic properties of particles, such as charge, mass, and spin, are determined by gauge symmetry. The photon concept has led to momentous advances in experimental and theoretical physics, including lasers, Bose–Einstein condensation, quantum field theory, and the probabilistic interpretation of quantum mechanics. It has been applied to photochemistry, high-resolution microscopy, and measurements of molecular distances. Moreover, photons have been studied as elements of quantum computers, and for applications in optical imaging and optical communication such as quantum cryptography.

Nomenclature

Photoelectric effect: the emission of electrons from a metal plate caused by light quanta – photons
1926 Gilbert N. Lewis letter which brought the word "photon" into common usage

The word quanta (singular quantum, Latin for how much) was used before 1900 to mean particles or amounts of different quantities, including electricity. In 1900, the German physicist Max Planck was studying black-body radiation, and he suggested that the experimental observations, specifically at shorter wavelengths, would be explained if the energy was "made up of a completely determinate number of finite equal parts", which he called "energy elements". In 1905, Albert Einstein published a paper in which he proposed that many light-related phenomena—including black-body radiation and the photoelectric effect—would be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete energy quanta. He called these a light quantum (German: ein Lichtquant).

The name photon derives from the Greek word for light, φῶς (transliterated phôs). Arthur Compton used photon in 1928, referring to Gilbert N. Lewis, who coined the term in a letter to Nature on 18 December 1926. The same name was used earlier but was never widely adopted before Lewis: in 1916 by the American physicist and psychologist Leonard T. Troland, in 1921 by the Irish physicist John Joly, in 1924 by the French physiologist René Wurmser (1890–1993), and in 1926 by the French physicist Frithiof Wolfers (1891–1971). The name was suggested initially as a unit related to the illumination of the eye and the resulting sensation of light and was used later in a physiological context. Although Wolfers's and Lewis's theories were contradicted by many experiments and never accepted, the new name was adopted by most physicists very soon after Compton used it.

In physics, a photon is usually denoted by the symbol γ (the Greek letter gamma). This symbol for the photon probably derives from gamma rays, which were discovered in 1900 by Paul Villard, named by Ernest Rutherford in 1903, and shown to be a form of electromagnetic radiation in 1914 by Rutherford and Edward Andrade. In chemistry and optical engineering, photons are usually symbolized by hν, which is the photon energy, where h is the Planck constant and the Greek letter ν (nu) is the photon's frequency.

Physical properties

The photon has no electric charge, is generally considered to have zero rest mass and is a stable particle. The experimental upper limit on the photon mass is very small, on the order of 10 kg; its lifetime would be more than 10 years. For comparison the age of the universe is about 1.38×10 years.

In a vacuum, a photon has two possible polarization states. The photon is the gauge boson for electromagnetism, and therefore all other quantum numbers of the photon (such as lepton number, baryon number, and flavour quantum numbers) are zero. Also, the photon obeys Bose–Einstein statistics, and not Fermi–Dirac statistics. That is, they do not obey the Pauli exclusion principle and more than one can occupy the same bound quantum state.

Photons are emitted in many natural processes. For example, when a charge is accelerated it emits synchrotron radiation. During a molecular, atomic or nuclear transition to a lower energy level, photons of various energy will be emitted, ranging from radio waves to gamma rays. Photons can also be emitted when a particle and its corresponding antiparticle are annihilated (for example, electron–positron annihilation).

Relativistic energy and momentum

See also: Photon energy and Special relativity
The cone shows possible values of wave 4-vector of a photon. The "time" axis gives the angular frequency (rad⋅s) and the "space" axis represents the angular wavenumber (rad⋅m). Green and indigo represent left and right polarization.

In empty space, the photon moves at c (the speed of light) and its energy and momentum are related by E = pc, where p is the magnitude of the momentum vector p. This derives from the following relativistic relation, with m = 0:

E 2 = p 2 c 2 + m 2 c 4   . {\displaystyle E^{2}=p^{2}c^{2}+m^{2}c^{4}~.}

The energy and momentum of a photon depend only on its frequency ( ν {\displaystyle \nu } ) or inversely, its wavelength (λ):

E = ω = h ν = h c λ {\displaystyle E=\hbar \,\omega =h\nu ={\frac {\,h\,c\,}{\lambda }}}
p = k   , {\displaystyle {\boldsymbol {p}}=\hbar {\boldsymbol {k}}~,}

where k is the wave vector, where

Since p {\displaystyle {\boldsymbol {p}}} points in the direction of the photon's propagation, the magnitude of its momentum is

p | p | = k = h ν c = h λ   . {\displaystyle p\equiv \left|{\boldsymbol {p}}\right|=\hbar k={\frac {\,h\nu \,}{c}}={\frac {\,h\,}{\lambda }}~.}

Polarization and spin angular momentum

Main articles: Photon polarization and Spin angular momentum of light

The photon also carries spin angular momentum, which is related to photon polarization. (Beams of light also exhibit properties described as orbital angular momentum of light).

The angular momentum of the photon has two possible values, either +ħ or −ħ. These two possible values correspond to the two possible pure states of circular polarization. Collections of photons in a light beam may have mixtures of these two values; a linearly polarized light beam will act as if it were composed of equal numbers of the two possible angular momenta.

The spin angular momentum of light does not depend on its frequency, and was experimentally verified by C. V. Raman and S. Bhagavantam in 1931.

Antiparticle annihilation

Main articles: Annihilation and Electron-positron annihilation

The collision of a particle with its antiparticle can create photons. In free space at least two photons must be created since, in the center of momentum frame, the colliding antiparticles have no net momentum, whereas a single photon always has momentum (determined by the photon's frequency or wavelength, which cannot be zero). Hence, conservation of momentum (or equivalently, translational invariance) requires that at least two photons are created, with zero net momentum. The energy of the two photons, or, equivalently, their frequency, may be determined from conservation of four-momentum.

Seen another way, the photon can be considered as its own antiparticle (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, pair production, is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter. That process is the reverse of "annihilation to one photon" allowed in the electric field of an atomic nucleus.

The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in momentum per unit time.

Experimental checks on photon mass

Current commonly accepted physical theories imply or assume the photon to be strictly massless. If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c, would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on speed that any object could theoretically attain in spacetime. Thus, it would still be the speed of spacetime ripples (gravitational waves and gravitons), but it would not be the speed of photons.

If a photon did have non-zero mass, there would be other effects as well. Coulomb's law would be modified and the electromagnetic field would have an extra physical degree of freedom. These effects yield more sensitive experimental probes of the photon mass than the frequency dependence of the speed of light. If Coulomb's law is not exactly valid, then that would allow the presence of an electric field to exist within a hollow conductor when it is subjected to an external electric field. This provides a means for precision tests of Coulomb's law. A null result of such an experiment has set a limit of m ≲ 10 eV/c.

Sharper upper limits on the mass of light have been obtained in experiments designed to detect effects caused by the galactic vector potential. Although the galactic vector potential is large because the galactic magnetic field exists on great length scales, only the magnetic field would be observable if the photon is massless. In the case that the photon has mass, the mass term ⁠1/2⁠mAμA would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on the photon mass of m < 3×10 eV/c. The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring. Such methods were used to obtain the sharper upper limit of 1.07×10 eV/c (the equivalent of 10 daltons) given by the Particle Data Group.

These sharp limits from the non-observation of the effects caused by the galactic vector potential have been shown to be model-dependent. If the photon mass is generated via the Higgs mechanism then the upper limit of m ≲ 10 eV/c from the test of Coulomb's law is valid.

Historical development

Main article: Light
Thomas Young's double-slit experiment in 1801 showed that light can act as a wave, helping to invalidate early particle theories of light.

In most theories up to the eighteenth century, light was pictured as being made of particles. Since particle models cannot easily account for the refraction, diffraction and birefringence of light, wave theories of light were proposed by René Descartes (1637), Robert Hooke (1665), and Christiaan Huygens (1678); however, particle models remained dominant, chiefly due to the influence of Isaac Newton. In the early 19th century, Thomas Young and August Fresnel clearly demonstrated the interference and diffraction of light, and by 1850 wave models were generally accepted. James Clerk Maxwell's 1865 prediction that light was an electromagnetic wave – which was confirmed experimentally in 1888 by Heinrich Hertz's detection of radio waves – seemed to be the final blow to particle models of light.

In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete. However, several observations could not be explained by any wave model of electromagnetic radiation, leading to the idea that light-energy was packaged into quanta described by E = hν. Later experiments showed that these light-quanta also carry momentum and, thus, can be considered particles: The photon concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.

The Maxwell wave theory, however, does not account for all properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its intensity, not on its frequency; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, some chemical reactions are provoked only by light of frequency higher than a certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it (the photoelectric effect); the energy of the ejected electron is related only to the light's frequency, not to its intensity.

At the same time, investigations of black-body radiation carried out over four decades (1860–1900) by various researchers culminated in Max Planck's hypothesis that the energy of any system that absorbs or emits electromagnetic radiation of frequency ν is an integer multiple of an energy quantum E = hν . As shown by Albert Einstein, some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics.

Since the Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself. Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if the energy of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space. In 1909 and 1916, Einstein showed that, if Planck's law regarding black-body radiation is accepted, the energy quanta must also carry momentum p = ⁠ h / λ ⁠ , making them full-fledged particles. This photon momentum was observed experimentally by Arthur Compton, for which he received the Nobel Prize in 1927. The pivotal question then, was how to unify Maxwell's wave theory of light with its experimentally observed particle nature. The answer to this question occupied Albert Einstein for the rest of his life, and was solved in quantum electrodynamics and its successor, the Standard Model. (See § Quantum field theory and § As a gauge boson, below.)

Up to 1923, most physicists were reluctant to accept that light itself was quantized. Instead, they tried to explain photon behaviour by quantizing only matter, as in the Bohr model of the hydrogen atom (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to quantum mechanics.

Einstein's 1905 predictions were verified experimentally in several ways in the first two decades of the 20th century, as recounted in Robert Millikan's Nobel lecture. However, before Compton's experiment showed that photons carried momentum proportional to their wave number (1922), most physicists were reluctant to believe that electromagnetic radiation itself might be particulate. (See, for example, the Nobel lectures of Wien, Planck and Millikan.) Instead, there was a widespread belief that energy quantization resulted from some unknown constraint on the matter that absorbed or emitted radiation. Attitudes changed over time. In part, the change can be traced to experiments such as those revealing Compton scattering, where it was much more difficult not to ascribe quantization to light itself to explain the observed results.

Even after Compton's experiment, Niels Bohr, Hendrik Kramers and John Slater made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called BKS theory. An important feature of the BKS theory is how it treated the conservation of energy and the conservation of momentum. In the BKS theory, energy and momentum are only conserved on the average across many interactions between matter and radiation. However, refined Compton experiments showed that the conservation laws hold for individual interactions. Accordingly, Bohr and his co-workers gave their model "as honorable a funeral as possible". Nevertheless, the failures of the BKS model inspired Werner Heisenberg in his development of matrix mechanics.

A few physicists persisted in developing semiclassical models in which electromagnetic radiation is not quantized, but matter appears to obey the laws of quantum mechanics. Although the evidence from chemical and physical experiments for the existence of photons was overwhelming by the 1970s, this evidence could not be considered as absolutely definitive; since it relied on the interaction of light with matter, and a sufficiently complete theory of matter could in principle account for the evidence. Nevertheless, all semiclassical theories were refuted definitively in the 1970s and 1980s by photon-correlation experiments. Hence, Einstein's hypothesis that quantization is a property of light itself is considered to be proven.

Wave–particle duality and uncertainty principles

Photons obey the laws of quantum mechanics, and so their behavior has both wave-like and particle-like aspects. When a photon is detected by a measuring instrument, it is registered as a single, particulate unit. However, the probability of detecting a photon is calculated by equations that describe waves. This combination of aspects is known as wave–particle duality. For example, the probability distribution for the location at which a photon might be detected displays clearly wave-like phenomena such as diffraction and interference. A single photon passing through a double slit has its energy received at a point on the screen with a probability distribution given by its interference pattern determined by Maxwell's wave equations. However, experiments confirm that the photon is not a short pulse of electromagnetic radiation; a photon's Maxwell waves will diffract, but photon energy does not spread out as it propagates, nor does this energy divide when it encounters a beam splitter. Rather, the received photon acts like a point-like particle since it is absorbed or emitted as a whole by arbitrarily small systems, including systems much smaller than its wavelength, such as an atomic nucleus (≈10 m across) or even the point-like electron.

While many introductory texts treat photons using the mathematical techniques of non-relativistic quantum mechanics, this is in some ways an awkward oversimplification, as photons are by nature intrinsically relativistic. Because photons have zero rest mass, no wave function defined for a photon can have all the properties familiar from wave functions in non-relativistic quantum mechanics. In order to avoid these difficulties, physicists employ the second-quantized theory of photons described below, quantum electrodynamics, in which photons are quantized excitations of electromagnetic modes.

Another difficulty is finding the proper analogue for the uncertainty principle, an idea frequently attributed to Heisenberg, who introduced the concept in analyzing a thought experiment involving an electron and a high-energy photon. However, Heisenberg did not give precise mathematical definitions of what the "uncertainty" in these measurements meant. The precise mathematical statement of the position–momentum uncertainty principle is due to Kennard, Pauli, and Weyl. The uncertainty principle applies to situations where an experimenter has a choice of measuring either one of two "canonically conjugate" quantities, like the position and the momentum of a particle. According to the uncertainty principle, no matter how the particle is prepared, it is not possible to make a precise prediction for both of the two alternative measurements: if the outcome of the position measurement is made more certain, the outcome of the momentum measurement becomes less so, and vice versa. A coherent state minimizes the overall uncertainty as far as quantum mechanics allows. Quantum optics makes use of coherent states for modes of the electromagnetic field. There is a tradeoff, reminiscent of the position–momentum uncertainty relation, between measurements of an electromagnetic wave's amplitude and its phase. This is sometimes informally expressed in terms of the uncertainty in the number of photons present in the electromagnetic wave, Δ N {\displaystyle \Delta N} , and the uncertainty in the phase of the wave, Δ ϕ {\displaystyle \Delta \phi } . However, this cannot be an uncertainty relation of the Kennard–Pauli–Weyl type, since unlike position and momentum, the phase ϕ {\displaystyle \phi } cannot be represented by a Hermitian operator.

Bose–Einstein model of a photon gas

Main articles: Bose gas, Bose–Einstein statistics, Spin-statistics theorem, Gas in a box, and Photon gas

In 1924, Satyendra Nath Bose derived Planck's law of black-body radiation without using any electromagnetism, but rather by using a modification of coarse-grained counting of phase space. Einstein showed that this modification is equivalent to assuming that photons are rigorously identical and that it implied a "mysterious non-local interaction", now understood as the requirement for a symmetric quantum mechanical state. This work led to the concept of coherent states and the development of the laser. In the same papers, Einstein extended Bose's formalism to material particles (bosons) and predicted that they would condense into their lowest quantum state at low enough temperatures; this Bose–Einstein condensation was observed experimentally in 1995. It was later used by Lene Hau to slow, and then completely stop, light in 1999 and 2001.

The modern view on this is that photons are, by virtue of their integer spin, bosons (as opposed to fermions with half-integer spin). By the spin-statistics theorem, all bosons obey Bose–Einstein statistics (whereas all fermions obey Fermi–Dirac statistics).

Stimulated and spontaneous emission

Main articles: Stimulated emission and Laser
Stimulated emission (in which photons "clone" themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the laser. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.

In 1916, Albert Einstein showed that Planck's radiation law could be derived from a semi-classical, statistical treatment of photons and atoms, which implies a link between the rates at which atoms emit and absorb photons. The condition follows from the assumption that functions of the emission and absorption of radiation by the atoms are independent of each other, and that thermal equilibrium is made by way of the radiation's interaction with the atoms. Consider a cavity in thermal equilibrium with all parts of itself and filled with electromagnetic radiation and that the atoms can emit and absorb that radiation. Thermal equilibrium requires that the energy density ρ ( ν ) {\displaystyle \rho (\nu )} of photons with frequency ν {\displaystyle \nu } (which is proportional to their number density) is, on average, constant in time; hence, the rate at which photons of any particular frequency are emitted must equal the rate at which they are absorbed.

Einstein began by postulating simple proportionality relations for the different reaction rates involved. In his model, the rate R j i {\displaystyle R_{ji}} for a system to absorb a photon of frequency ν {\displaystyle \nu } and transition from a lower energy E j {\displaystyle E_{j}} to a higher energy E i {\displaystyle E_{i}} is proportional to the number N j {\displaystyle N_{j}} of atoms with energy E j {\displaystyle E_{j}} and to the energy density ρ ( ν ) {\displaystyle \rho (\nu )} of ambient photons of that frequency,

R j i = N j B j i ρ ( ν ) {\displaystyle R_{ji}=N_{j}B_{ji}\rho (\nu )\!}

where B j i {\displaystyle B_{ji}} is the rate constant for absorption. For the reverse process, there are two possibilities: spontaneous emission of a photon, or the emission of a photon initiated by the interaction of the atom with a passing photon and the return of the atom to the lower-energy state. Following Einstein's approach, the corresponding rate R i j {\displaystyle R_{ij}} for the emission of photons of frequency ν {\displaystyle \nu } and transition from a higher energy E i {\displaystyle E_{i}} to a lower energy E j {\displaystyle E_{j}} is

R i j = N i A i j + N i B i j ρ ( ν ) {\displaystyle R_{ij}=N_{i}A_{ij}+N_{i}B_{ij}\rho (\nu )\!}

where A i j {\displaystyle A_{ij}} is the rate constant for emitting a photon spontaneously, and B i j {\displaystyle B_{ij}} is the rate constant for emissions in response to ambient photons (induced or stimulated emission). In thermodynamic equilibrium, the number of atoms in state i {\displaystyle i} and those in state j {\displaystyle j} must, on average, be constant; hence, the rates R j i {\displaystyle R_{ji}} and R i j {\displaystyle R_{ij}} must be equal. Also, by arguments analogous to the derivation of Boltzmann statistics, the ratio of N i {\displaystyle N_{i}} and N j {\displaystyle N_{j}} is g i / g j exp ( E j E i ) / ( k T ) , {\displaystyle g_{i}/g_{j}\exp {(E_{j}-E_{i})/(kT)},} where g i {\displaystyle g_{i}} and g j {\displaystyle g_{j}} are the degeneracy of the state i {\displaystyle i} and that of j {\displaystyle j} , respectively, E i {\displaystyle E_{i}} and E j {\displaystyle E_{j}} their energies, k {\displaystyle k} the Boltzmann constant and T {\displaystyle T} the system's temperature. From this, it is readily derived that

g i B i j = g j B j i {\displaystyle g_{i}B_{ij}=g_{j}B_{ji}} and

A i j = 8 π h ν 3 c 3 B i j . {\displaystyle A_{ij}={\frac {8\pi h\nu ^{3}}{c^{3}}}B_{ij}.}

The A i j {\displaystyle A_{ij}} and B i j {\displaystyle B_{ij}} are collectively known as the Einstein coefficients.

Einstein could not fully justify his rate equations, but claimed that it should be possible to calculate the coefficients A i j {\displaystyle A_{ij}} , B j i {\displaystyle B_{ji}} and B i j {\displaystyle B_{ij}} once physicists had obtained "mechanics and electrodynamics modified to accommodate the quantum hypothesis". Not long thereafter, in 1926, Paul Dirac derived the B i j {\displaystyle B_{ij}} rate constants by using a semiclassical approach, and, in 1927, succeeded in deriving all the rate constants from first principles within the framework of quantum theory. Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called second quantization or quantum field theory; earlier quantum mechanical treatments only treat material particles as quantum mechanical, not the electromagnetic field.

Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the direction of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by Newton in his treatment of birefringence and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in the light particle determined which of the two paths a single photon would take. Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation from quantum mechanics. Ironically, Max Born's probabilistic interpretation of the wave function was inspired by Einstein's later work searching for a more complete theory.

Quantum field theory

Quantization of the electromagnetic field

Main article: Quantum field theory
Different electromagnetic modes (such as those depicted here) can be treated as independent simple harmonic oscillators. A photon corresponds to a unit of energy E =  in its electromagnetic mode.

In 1910, Peter Debye derived Planck's law of black-body radiation from a relatively simple assumption. He decomposed the electromagnetic field in a cavity into its Fourier modes, and assumed that the energy in any mode was an integer multiple of h ν {\displaystyle h\nu } , where ν {\displaystyle \nu } is the frequency of the electromagnetic mode. Planck's law of black-body radiation follows immediately as a geometric sum. However, Debye's approach failed to give the correct formula for the energy fluctuations of black-body radiation, which were derived by Einstein in 1909.

In 1925, Born, Heisenberg and Jordan reinterpreted Debye's concept in a key way. As may be shown classically, the Fourier modes of the electromagnetic field—a complete set of electromagnetic plane waves indexed by their wave vector k and polarization state—are equivalent to a set of uncoupled simple harmonic oscillators. Treated quantum mechanically, the energy levels of such oscillators are known to be E = n h ν {\displaystyle E=nh\nu } , where ν {\displaystyle \nu } is the oscillator frequency. The key new step was to identify an electromagnetic mode with energy E = n h ν {\displaystyle E=nh\nu } as a state with n {\displaystyle n} photons, each of energy h ν {\displaystyle h\nu } . This approach gives the correct energy fluctuation formula.

Feynman diagram of two electrons interacting by exchange of a virtual photon.

Dirac took this one step further. He treated the interaction between a charge and an electromagnetic field as a small perturbation that induces transitions in the photon states, changing the numbers of photons in the modes, while conserving energy and momentum overall. Dirac was able to derive Einstein's A i j {\displaystyle A_{ij}} and B i j {\displaystyle B_{ij}} coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in the opposite direction; he derived Planck's law of black-body radiation by assuming B–E statistics). In Dirac's time, it was not yet known that all bosons, including photons, must obey Bose–Einstein statistics.

Dirac's second-order perturbation theory can involve virtual photons, transient intermediate states of the electromagnetic field; the static electric and magnetic interactions are mediated by such virtual photons. In such quantum field theories, the probability amplitude of observable events is calculated by summing over all possible intermediate steps, even ones that are unphysical; hence, virtual photons are not constrained to satisfy E = p c {\displaystyle E=pc} , and may have extra polarization states; depending on the gauge used, virtual photons may have three or four polarization states, instead of the two states of real photons. Although these transient virtual photons can never be observed, they contribute measurably to the probabilities of observable events.

Indeed, such second-order and higher-order perturbation calculations can give apparently infinite contributions to the sum. Such unphysical results are corrected for using the technique of renormalization.

Other virtual particles may contribute to the summation as well; for example, two photons may interact indirectly through virtual electronpositron pairs. Such photon–photon scattering (see two-photon physics), as well as electron–photon scattering, is meant to be one of the modes of operations of the planned particle accelerator, the International Linear Collider.

In modern physics notation, the quantum state of the electromagnetic field is written as a Fock state, a tensor product of the states for each electromagnetic mode

| n k 0 | n k 1 | n k n {\displaystyle |n_{k_{0}}\rangle \otimes |n_{k_{1}}\rangle \otimes \dots \otimes |n_{k_{n}}\rangle \dots }

where | n k i {\displaystyle |n_{k_{i}}\rangle } represents the state in which n k i {\displaystyle \,n_{k_{i}}} photons are in the mode k i {\displaystyle k_{i}} . In this notation, the creation of a new photon in mode k i {\displaystyle k_{i}} (e.g., emitted from an atomic transition) is written as | n k i | n k i + 1 {\displaystyle |n_{k_{i}}\rangle \rightarrow |n_{k_{i}}+1\rangle } . This notation merely expresses the concept of Born, Heisenberg and Jordan described above, and does not add any physics.

As a gauge boson

Main article: Gauge theory

The electromagnetic field can be understood as a gauge field, i.e., as a field that results from requiring that a gauge symmetry holds independently at every position in spacetime. For the electromagnetic field, this gauge symmetry is the Abelian U(1) symmetry of complex numbers of absolute value 1, which reflects the ability to vary the phase of a complex field without affecting observables or real valued functions made from it, such as the energy or the Lagrangian.

The quanta of an Abelian gauge field must be massless, uncharged bosons, as long as the symmetry is not broken; hence, the photon is predicted to be massless, and to have zero electric charge and integer spin. The particular form of the electromagnetic interaction specifies that the photon must have spin ±1; thus, its helicity must be ± {\displaystyle \pm \hbar } . These two spin components correspond to the classical concepts of right-handed and left-handed circularly polarized light. However, the transient virtual photons of quantum electrodynamics may also adopt unphysical polarization states.

In the prevailing Standard Model of physics, the photon is one of four gauge bosons in the electroweak interaction; the other three are denoted W, W and Z and are responsible for the weak interaction. Unlike the photon, these gauge bosons have mass, owing to a mechanism that breaks their SU(2) gauge symmetry. The unification of the photon with W and Z gauge bosons in the electroweak interaction was accomplished by Sheldon Glashow, Abdus Salam and Steven Weinberg, for which they were awarded the 1979 Nobel Prize in physics. Physicists continue to hypothesize grand unified theories that connect these four gauge bosons with the eight gluon gauge bosons of quantum chromodynamics; however, key predictions of these theories, such as proton decay, have not been observed experimentally.

Hadronic properties

Main article: Photon structure function

Measurements of the interaction between energetic photons and hadrons show that the interaction is much more intense than expected by the interaction of merely photons with the hadron's electric charge. Furthermore, the interaction of energetic photons with protons is similar to the interaction of photons with neutrons in spite of the fact that the electrical charge structures of protons and neutrons are substantially different. A theory called Vector Meson Dominance (VMD) was developed to explain this effect. According to VMD, the photon is a superposition of the pure electromagnetic photon, which interacts only with electric charges, and vector mesons, which mediate the residual nuclear force. However, if experimentally probed at very short distances, the intrinsic structure of the photon appears to have as components a charge-neutral flux of quarks and gluons, quasi-free according to asymptotic freedom in QCD. That flux is described by the photon structure function. A review by Nisius (2000) presented a comprehensive comparison of data with theoretical predictions.

Contributions to the mass of a system

See also: Mass in special relativity and Mass in general relativity

The energy of a system that emits a photon is decreased by the energy E {\displaystyle E} of the photon as measured in the rest frame of the emitting system, which may result in a reduction in mass in the amount E / c 2 {\displaystyle {E}/{c^{2}}} . Similarly, the mass of a system that absorbs a photon is increased by a corresponding amount. As an application, the energy balance of nuclear reactions involving photons is commonly written in terms of the masses of the nuclei involved, and terms of the form E / c 2 {\displaystyle {E}/{c^{2}}} for the gamma photons (and for other relevant energies, such as the recoil energy of nuclei).

This concept is applied in key predictions of quantum electrodynamics (QED, see above). In that theory, the mass of electrons (or, more generally, leptons) is modified by including the mass contributions of virtual photons, in a technique known as renormalization. Such "radiative corrections" contribute to a number of predictions of QED, such as the magnetic dipole moment of leptons, the Lamb shift, and the hyperfine structure of bound lepton pairs, such as muonium and positronium.

Since photons contribute to the stress–energy tensor, they exert a gravitational attraction on other objects, according to the theory of general relativity. Conversely, photons are themselves affected by gravity; their normally straight trajectories may be bent by warped spacetime, as in gravitational lensing, and their frequencies may be lowered by moving to a higher gravitational potential, as in the Pound–Rebka experiment. However, these effects are not specific to photons; exactly the same effects would be predicted for classical electromagnetic waves.

In matter

See also: Refractive index, Group velocity, and Photochemistry

Light that travels through transparent matter does so at a lower speed than c, the speed of light in vacuum. The factor by which the speed is decreased is called the refractive index of the material. In a classical wave picture, the slowing can be explained by the light inducing electric polarization in the matter, the polarized matter radiating new light, and that new light interfering with the original light wave to form a delayed wave. In a particle picture, the slowing can instead be described as a blending of the photon with quantum excitations of the matter to produce quasi-particles known as polaritons. Polaritons have a nonzero effective mass, which means that they cannot travel at c. Light of different frequencies may travel through matter at different speeds; this is called dispersion (not to be confused with scattering). In some cases, it can result in extremely slow speeds of light in matter. The effects of photon interactions with other quasi-particles may be observed directly in Raman scattering and Brillouin scattering.

Photons can be scattered by matter. For example, photons scatter so many times in the solar radiative zone after leaving the core of the Sun that radiant energy takes about a million years to reach the convection zone. However, photons emitted from the sun's photosphere take only 8.3 minutes to reach Earth.

Photons can also be absorbed by nuclei, atoms or molecules, provoking transitions between their energy levels. A classic example is the molecular transition of retinal (C20H28O), which is responsible for vision, as discovered in 1958 by Nobel laureate biochemist George Wald and co-workers. The absorption provokes a cis–trans isomerization that, in combination with other such transitions, is transduced into nerve impulses. The absorption of photons can even break chemical bonds, as in the photodissociation of chlorine; this is the subject of photochemistry.

Technological applications

Photons have many applications in technology. These examples are chosen to illustrate applications of photons per se, rather than general optical devices such as lenses, etc. that could operate under a classical theory of light. The laser is an important application and is discussed above under stimulated emission.

Individual photons can be detected by several methods. The classic photomultiplier tube exploits the photoelectric effect: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. Semiconductor charge-coupled device chips use a similar effect: an incident photon generates a charge on a microscopic capacitor that can be detected. Other detectors such as Geiger counters use the ability of photons to ionize gas molecules contained in the device, causing a detectable change of conductivity of the gas.

Planck's energy formula E = h ν {\displaystyle E=h\nu } is often used by engineers and chemists in design, both to compute the change in energy resulting from a photon absorption and to determine the frequency of the light emitted from a given photon emission. For example, the emission spectrum of a gas-discharge lamp can be altered by filling it with (mixtures of) gases with different electronic energy level configurations.

Under some conditions, an energy transition can be excited by "two" photons that individually would be insufficient. This allows for higher resolution microscopy, because the sample absorbs energy only in the spectrum where two beams of different colors overlap significantly, which can be made much smaller than the excitation volume of a single beam (see two-photon excitation microscopy). Moreover, these photons cause less damage to the sample, since they are of lower energy.

In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of fluorescence resonance energy transfer, a technique that is used in molecular biology to study the interaction of suitable proteins.

Several different kinds of hardware random number generators involve the detection of single photons. In one example, for each bit in the random sequence that is to be produced, a photon is sent to a beam-splitter. In such a situation, there are two possible outcomes of equal probability. The actual outcome is used to determine whether the next bit in the sequence is "0" or "1".

Quantum optics and computation

Much research has been devoted to applications of photons in the field of quantum optics. Photons seem well-suited to be elements of an extremely fast quantum computer, and the quantum entanglement of photons is a focus of research. Nonlinear optical processes are another active research area, with topics such as two-photon absorption, self-phase modulation, modulational instability and optical parametric oscillators. However, such processes generally do not require the assumption of photons per se; they may often be modeled by treating atoms as nonlinear oscillators. The nonlinear process of spontaneous parametric down conversion is often used to produce single-photon states. Finally, photons are essential in some aspects of optical communication, especially for quantum cryptography.

Two-photon physics studies interactions between photons, which are rare. In 2018, Massachusetts Institute of Technology researchers announced the discovery of bound photon triplets, which may involve polaritons.

See also

Notes

  1. Although the 1967 Elsevier translation of Planck's Nobel Lecture interprets Planck's Lichtquant as "photon", the more literal 1922 translation by Hans Thacher Clarke and Ludwik Silberstein Planck, Max (1922). "via Google Books". The Origin and Development of the Quantum Theory. Clarendon Press – via Internet Archive (archive.org, 2007-03-01). uses "light-quantum". No evidence is known that Planck himself had used the term "photon" as of 1926 (see also).
  2. Asimov credits Arthur Compton with defining quanta of energy as photons in 1923.
  3. However, it is possible if the system interacts with a third particle or field for the annihilation to produce one photon, since the third particle or field can absorb momentum equal and opposite to the single photon, providing dynamic balance. An example is when a positron annihilates with a bound atomic electron; in that case, it is possible for only one photon to be emitted, as the nuclear Coulomb field breaks translational symmetry.
  4. The phrase "no matter how intense" refers to intensities below approximately 10 W/cm at which point perturbation theory begins to break down. In contrast, in the intense regime, which for visible light is above approximately 10 W/cm, the classical wave description correctly predicts the energy acquired by electrons, called ponderomotive energy. By comparison, sunlight is only about 0.1 W/cm.
  5. These experiments produce results that cannot be explained by any classical theory of light, since they involve anticorrelations that result from the quantum measurement process. In 1974, the first such experiment was carried out by Clauser, who reported a violation of a classical Cauchy–Schwarz inequality. In 1977, Kimble et al. demonstrated an analogous anti-bunching effect of photons interacting with a beam splitter; this approach was simplified and sources of error eliminated in the photon-anticorrelation experiment of Grangier, Roger, & Aspect (1986); This work is reviewed and simplified further in Thorn, Neel, et al. (2004).
  6. The issue was first formulated by Theodore Duddell Newton and Eugene Wigner. The challenges arise from the fundamental nature of the Lorentz group, which describes the symmetries of spacetime in special relativity. Unlike the generators of Galilean transformations, the generators of Lorentz boosts do not commute, and so simultaneously assigning low uncertainties to all coordinates of a relativistic particle's position becomes problematic.

References

  1. ^ Amsler, C.; et al. (Particle Data Group) (2008). "Review of Particle Physics: Gauge and Higgs bosons" (PDF). Physics Letters B. 667 (1): 1. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl:1854/LU-685594. S2CID 227119789. Archived from the original on 2018-12-25. Retrieved 2010-04-09.
  2. Joos, George (1951). Theoretical Physics. London and Glasgow: Blackie and Son Limited. p. 679.
  3. ^ "December 18, 1926: Gilbert Lewis coins "photon" in letter to Nature". www.aps.org. Archived from the original on 2019-05-02. Retrieved 2019-03-09.
  4. "Gilbert N. Lewis". Atomic Heritage Foundation. Archived from the original on 2015-04-16. Retrieved 2019-03-09.
  5. ^ Kragh, Helge (2014). "Photon: New light on an old name". arXiv:1401.0293 .
  6. Compton, Arthur H. (1965) . "X-rays as a branch of optics" (PDF). From Nobel Lectures, Physics 1922–1941. Amsterdam: Elsevier Publishing Company. Archived (PDF) from the original on 12 May 2024. Retrieved 3 January 2019.
  7. Kimble, H.J.; Dagenais, M.; Mandel, L. (1977). "Photon Anti-bunching in Resonance Fluorescence" (PDF). Physical Review Letters. 39 (11): 691–695. Bibcode:1977PhRvL..39..691K. doi:10.1103/PhysRevLett.39.691. Archived (PDF) from the original on 2020-11-25. Retrieved 2019-01-03.
  8. Grangier, P.; Roger, G.; Aspect, A. (1986). "Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences". Europhysics Letters. 1 (4): 173–179. Bibcode:1986EL......1..173G. CiteSeerX 10.1.1.178.4356. doi:10.1209/0295-5075/1/4/004. S2CID 250837011.
  9. Kragh, Helge (2000-12-01). "Max Planck: the reluctant revolutionary". Physics World. 13 (12): 31–36. doi:10.1088/2058-7058/13/12/34.
  10. ^ Einstein, Albert (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF). Annalen der Physik (in German). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. Archived (PDF) from the original on 2015-09-24. Retrieved 2010-08-25. According to this picture, the energy of a light wave emitted from a point source is not spread continuously over ever larger volumes, but consists of a finite number of energy quanta that are spatially localized at points of space, move without dividing and are absorbed or generated only as a whole. An English translation is available from Wikisource.
  11. Lewis, Gilbert N. (18 December 1926). "The conservation of photons". Nature. 118 (2981): 874–875. Bibcode:1926Natur.118..874L. doi:10.1038/118874a0. eISSN 1476-4687. S2CID 4110026. see also
    "Discordances entre l'expérience et la théorie électromagnétique du rayonnement". Written at Bruxelles, Belgium. Electrons et photons: Rapports et discussions du cinquième Conseil de Physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l'Institut International de Physique Solvay. Cinquième Conseil de Physique (in French). l'Institut International de Physique Solvay (host institution). Paris, France: Gauthier-Villars et Cie (published 1928). 24–29 October 1927. pp. 55–85.{{cite conference}}: CS1 maint: others (link)
  12. ^ Asimov, Isaac (1983). The Neutrino: Ghost particle of the atom. Garden City, NY: Avon Books. ISBN 978-0-380-00483-6. and
    Asimov, Isaac (1971). The Universe: From flat Earth to quasar. New York: Walker. ISBN 978-0-8027-0316-3. LCCN 66022515.
  13. Villard, Paul Ulrich (1900). "Sur la réflexion et la réfraction des rayons cathodiques et des rayons déviables du radium". Comptes Rendus des Séances de l'Académie des Sciences (in French). 130: 1010–1012.
  14. Villard, Paul Ulrich (1900). "Sur le rayonnement du radium". Comptes Rendus des Séances de l'Académie des Sciences (in French). 130: 1178–1179.
  15. Rutherford, Ernest; Andrade, Edward N.C. (1914). "The wavelength of the soft gamma rays from Radium B". Philosophical Magazine. 27 (161): 854–868. doi:10.1080/14786440508635156. Archived from the original on 2020-03-08. Retrieved 2019-08-25.
  16. Liddle, Andrew (2015). An Introduction to Modern Cosmology. John Wiley & Sons. p. 16. ISBN 978-1-118-69025-3. Archived from the original on 2024-05-13. Retrieved 2017-02-27.
  17. Frisch, David H.; Thorndike, Alan M. (1964). Elementary Particles. Princeton, New Jersey: David Van Nostrand. p. 22.
  18. Kobychev, V. V.; Popov, S. B. (2005). "Constraints on the photon charge from observations of extragalactic sources". Astronomy Letters. 31 (3): 147–151. arXiv:hep-ph/0411398. Bibcode:2005AstL...31..147K. doi:10.1134/1.1883345. S2CID 119409823.
  19. Baez, John. "What is the mass of a photon?" (pers. academic site). U.C. Riverside. Archived from the original on 2014-05-31. Retrieved 2009-01-13.
  20. Tu, Liang-Cheng; Luo, Jun; Gillies, George T (2005-01-01). "The mass of the photon". Reports on Progress in Physics. 68 (1): 77–130. Bibcode:2005RPPh...68...77T. doi:10.1088/0034-4885/68/1/R02. ISSN 0034-4885.
  21. Goldhaber, Alfred Scharff; Nieto, Michael Martin (2010-03-23). "Photon and graviton mass limits". Reviews of Modern Physics. 82 (1): 939–979. arXiv:0809.1003. Bibcode:2010RvMP...82..939G. doi:10.1103/RevModPhys.82.939. ISSN 0034-6861. Archived from the original on 2024-05-13. Retrieved 2024-02-01.
  22. Heeck, Julian (2013-07-11). "How Stable is the Photon?". Physical Review Letters. 111 (2): 021801. arXiv:1304.2821. Bibcode:2013PhRvL.111b1801H. doi:10.1103/PhysRevLett.111.021801. ISSN 0031-9007. PMID 23889385. Archived from the original on 2024-05-13. Retrieved 2024-02-01.
  23. Schwartz, Matthew D. (2014). Quantum Field Theory and the Standard Model. Cambridge University Press. p. 66. ISBN 978-1-107-03473-0.
  24. "Role as gauge boson and polarization" §5.1 in Aitchison, I.J.R.; Hey, A.J.G. (1993). Gauge Theories in Particle Physics. IOP Publishing. ISBN 978-0-85274-328-7. Archived from the original on 2023-01-17. Retrieved 2016-10-06.
  25. Amsler, C.; et al. (2008). "Review of Particle Physics" (PDF). Physics Letters B. 667 (1–5): 31. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl:1854/LU-685594. PMID 10020536. S2CID 227119789. Archived (PDF) from the original on 2020-06-01. Retrieved 2017-10-26.
  26. ^ Halliday, David; Resnick, Robert; Walker, Jerl (2005). Fundamental of Physics (7th ed.). John Wiley and Sons, Inc. ISBN 978-0-471-23231-5.
  27. See Alonso & Finn 1968, Section 1.6.
  28. Soper, Davison E. "Electromagnetic radiation is made of photons". Institute of Theoretical Science. University of Oregon. Archived from the original on 2023-04-08. Retrieved 2024-03-21.
  29. Hecht, Eugene (1998). Optics (3rd ed.). Reading, Massachusetts; Harlow: Addison-Wesley. ISBN 978-0-201-83887-9.
  30. Raman, C. V.; Bhagavantam, S. (1931). "Experimental proof of the spin of the photon" (PDF). Indian Journal of Physics. 6 (3244): 353. Bibcode:1932Natur.129...22R. doi:10.1038/129022a0. hdl:10821/664. S2CID 4064852. Archived from the original (PDF) on 2016-06-03. Retrieved 2008-12-28.
  31. Griffiths, David J. (2008). Introduction to Elementary Particles (2nd revised ed.). WILEY-VCH. ISBN 978-3-527-40601-2.
  32. Alonso & Finn 1968, Section 9.3.
  33. Born, Max; Blin-Stoyle, Roger John; Radcliffe, J. M. (1989). "Appendix XXXII". Atomic Physics. Courier Corporation. ISBN 978-0-486-65984-8.
  34. Mermin, David (February 1984). "Relativity without light". American Journal of Physics. 52 (2): 119–124. Bibcode:1984AmJPh..52..119M. doi:10.1119/1.13917.
  35. Plimpton, S.; Lawton, W. (1936). "A Very Accurate Test of Coulomb's Law of Force Between Charges". Physical Review. 50 (11): 1066. Bibcode:1936PhRv...50.1066P. doi:10.1103/PhysRev.50.1066.
  36. Williams, E.; Faller, J.; Hill, H. (1971). "New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass". Physical Review Letters. 26 (12): 721. Bibcode:1971PhRvL..26..721W. doi:10.1103/PhysRevLett.26.721.
  37. Chibisov, G. V. (1976). "Astrophysical upper limits on the photon rest mass". Soviet Physics Uspekhi. 19 (7): 624. Bibcode:1976SvPhU..19..624C. doi:10.1070/PU1976v019n07ABEH005277.
  38. Lakes, Roderic (1998). "Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential". Physical Review Letters. 80 (9): 1826. Bibcode:1998PhRvL..80.1826L. doi:10.1103/PhysRevLett.80.1826.
  39. Amsler, C; Doser, M; Antonelli, M; Asner, D; Babu, K; Baer, H; Band, H; Barnett, R; et al. (2008). "Review of Particle Physics⁎" (PDF). Physics Letters B. 667 (1–5): 1. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl:1854/LU-685594. S2CID 227119789. Archived (PDF) from the original on 2020-06-01. Retrieved 2017-10-26. Summary Table Archived 2010-01-09 at the Wayback Machine
  40. Adelberger, Eric; Dvali, Gia; Gruzinov, Andrei (2007). "Photon-Mass Bound Destroyed by Vortices". Physical Review Letters. 98 (1): 010402. arXiv:hep-ph/0306245. Bibcode:2007PhRvL..98a0402A. doi:10.1103/PhysRevLett.98.010402. PMID 17358459. S2CID 31249827.
  41. Descartes, René (1637). Discours de la méthode (Discourse on Method) (in French). Imprimerie de Ian Maire. ISBN 978-0-268-00870-3.
  42. Hooke, Robert (1667). Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon ... London, UK: Royal Society of London. ISBN 978-0-486-49564-4. Archived from the original on 2008-12-02. Retrieved 2006-09-26.
  43. Huygens, Christiaan (1678). Traité de la lumière (in French).. An English translation is available from Project Gutenberg
  44. ^ Newton, Isaac (1952) . Opticks (4th ed.). Dover, New York: Dover Publications. Book II, Part III, Propositions XII–XX; Queries 25–29. ISBN 978-0-486-60205-9.
  45. Buchwald, J. Z. (1989). "The Rise of the Wave Theory of Light: Optical theory and experiment in the early nineteenth century". Physics Today. 43 (4). University of Chicago Press: 78–80. Bibcode:1990PhT....43d..78B. doi:10.1063/1.2810533. ISBN 978-0-226-07886-1. OCLC 18069573.
  46. Maxwell, James Clerk (1865). "A Dynamical Theory of the Electromagnetic Field". Philosophical Transactions of the Royal Society. 155: 459–512. Bibcode:1865RSPT..155..459M. doi:10.1098/rstl.1865.0008. S2CID 186207827. This article followed a presentation by Maxwell on 8 December 1864 to the Royal Society.
  47. Hertz, Heinrich (1888). "Über Strahlen elektrischer Kraft". Sitzungsberichte der Preussischen Akademie der Wissenschaften (in German). 1888. Berlin, Deutschland: 1297–1307.
  48. "Frequency-dependence of luminiscence" pp. 276ff., §1.4 "photoelectric effect" in Alonso & Finn 1968.
  49. See also: Boreham, Bruce W.; Hora, Heinrich; Bolton, Paul R. (1996). "Photon density and the correspondence principle of electromagnetic interaction". AIP Conference Proceedings. 369: 1234–1243. Bibcode:1996AIPC..369.1234B. doi:10.1063/1.50410.
  50. ^ Wien, W. (1911). "Wilhelm Wien Nobel Lecture". nobelprize.org. Archived from the original on 2011-07-15. Retrieved 2006-08-25.
  51. Planck, Max (1901). "Über das Gesetz der Energieverteilung im Normalspectrum". Annalen der Physik (in German). 4 (3): 553–563. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310. English translation
  52. ^ Planck, Max (1920). "Max Planck's Nobel Lecture". nobelprize.org. Archived from the original on 2011-07-15. Retrieved 2006-08-25.
  53. ^ Einstein, Albert (1909). "Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung" (PDF). Physikalische Zeitschrift (in German). 10: 817–825. Archived (PDF) from the original on 2011-06-07. Retrieved 2010-08-25. An English translation is available from Wikisource.
  54. Presentation speech by Svante Arrhenius for the 1921 Nobel Prize in Physics, December 10, 1922. Online text Archived 2011-09-04 at the Wayback Machine from , The Nobel Foundation 2008. Access date 2008-12-05.
  55. Einstein, Albert (1916). "Zur Quantentheorie der Strahlung". Mitteilungen der Physikalischen Gesellschaft zu Zürich (in German). 16: 47. Also Physikalische Zeitschrift (in German), 18, 121–128 (1917).
  56. ^ Compton, Arthur (1923). "A quantum theory of the scattering of X-rays by light elements". Physical Review. 21 (5): 483–502. Bibcode:1923PhRv...21..483C. doi:10.1103/PhysRev.21.483. Archived from the original on 2018-01-29. Retrieved 2020-11-08.
  57. ^ Pais, A. (1982). Subtle is the Lord: The science and the life of Albert Einstein. Oxford University Press. ISBN 978-0-19-853907-0.
  58. ^ Millikan, Robert A. (1924). "Robert A. Millikan's Nobel Lecture". Archived from the original on 2011-07-15. Retrieved 2006-08-25.
  59. Hendry, J. (1980). "The development of attitudes to the wave–particle duality of light and quantum theory, 1900–1920". Annals of Science. 37 (1): 59–79. doi:10.1080/00033798000200121.
  60. Bohr, Niels; Kramers, Hendrik Anthony; Slater, John C. (1924). "The Quantum Theory of Radiation". Philosophical Magazine. 47 (281): 785–802. doi:10.1080/14786442408565262. Also Zeitschrift für Physik (in German), 24, p. 69 (1924).
  61. Howard, Don (December 2004). "Who Invented the "Copenhagen Interpretation"? A Study in Mythology". Philosophy of Science. 71 (5): 669–682. doi:10.1086/425941. ISSN 0031-8248. JSTOR 10.1086/425941. S2CID 9454552.
  62. Heisenberg, Werner (1933). "Heisenberg Nobel lecture". Archived from the original on 2011-07-19. Retrieved 2006-09-11.
  63. Mandel, Leonard (1976). Wolf, E. (ed.). II the Case for and Against Semiclassical Radiation Theory. Progress in Optics. Vol. 13. North-Holland. pp. 27–69. Bibcode:1976PrOpt..13...27M. doi:10.1016/S0079-6638(08)70018-0. ISBN 978-0-444-10806-7. {{cite book}}: |journal= ignored (help)
  64. Grangier, P.; Roger, G.; Aspect, A. (1986). "Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences". Europhysics Letters. 1 (4): 173–179. Bibcode:1986EL......1..173G. CiteSeerX 10.1.1.178.4356. doi:10.1209/0295-5075/1/4/004. S2CID 250837011.
  65. Thorn, J.J.; Neel, M.S.; Donato, V.W.; Bergreen, G.S.; Davies, R.E.; Beck, M. (2004). "Observing the quantum behavior of light in an undergraduate laboratory" (PDF). American Journal of Physics. 72 (9): 1210–1219. Bibcode:2004AmJPh..72.1210T. doi:10.1119/1.1737397. Archived (PDF) from the original on 2016-02-01. Retrieved 2009-06-29.
  66. Taylor, G. I. (1909). "Interference Fringes with Feeble Light". Mathematical Proceedings of the Cambridge Philosophical Society. 15: 114. Retrieved 7 December 2024.
  67. Saleh, B. E. A. & Teich, M. C. (2007). Fundamentals of Photonics. Wiley. ISBN 978-0-471-35832-9.
  68. Newton, T.D.; Wigner, E.P. (1949). "Localized states for elementary particles" (PDF). Reviews of Modern Physics. 21 (3): 400–406. Bibcode:1949RvMP...21..400N. doi:10.1103/RevModPhys.21.400. Archived (PDF) from the original on 2023-05-16. Retrieved 2023-06-21.
  69. Bialynicki-Birula, I. (1994). "On the wave function of the photon". Acta Physica Polonica A. 86 (1–2): 97–116. Bibcode:1994AcPPA..86...97B. doi:10.12693/APhysPolA.86.97.
  70. Sipe, J.E. (1995). "Photon wave functions". Physical Review A. 52 (3): 1875–1883. Bibcode:1995PhRvA..52.1875S. doi:10.1103/PhysRevA.52.1875. PMID 9912446.
  71. Bialynicki-Birula, I. (1996). V Photon Wave Function. Progress in Optics. Vol. 36. pp. 245–294. Bibcode:1996PrOpt..36..245B. doi:10.1016/S0079-6638(08)70316-0. ISBN 978-0-444-82530-8. S2CID 17695022. {{cite book}}: |journal= ignored (help)
  72. ^ Scully, M. O.; Zubairy, M. S. (1997). Quantum Optics. Cambridge, England: Cambridge University Press. ISBN 978-0-521-43595-6. Archived from the original on 2024-05-13. Retrieved 2016-10-06.
  73. Busch, Paul; Lahti, Pekka; Werner, Reinhard F. (2013-10-17). "Proof of Heisenberg's Error-Disturbance Relation" (PDF). Physical Review Letters. 111 (16): 160405. arXiv:1306.1565. Bibcode:2013PhRvL.111p0405B. doi:10.1103/PhysRevLett.111.160405. ISSN 0031-9007. PMID 24182239. S2CID 24507489.
  74. Appleby, David Marcus (2016-05-06). "Quantum Errors and Disturbances: Response to Busch, Lahti and Werner". Entropy. 18 (5): 174. arXiv:1602.09002. Bibcode:2016Entrp..18..174A. doi:10.3390/e18050174.
  75. Landau, Lev D.; Lifschitz, Evgeny M. (1977). Quantum Mechanics: Non-Relativistic Theory. Vol. 3 (3rd ed.). Pergamon Press. ISBN 978-0-08-020940-1. OCLC 2284121.
  76. Busch, P.; Grabowski, M.; Lahti, P. J. (January 1995). "Who Is Afraid of POV Measures? Unified Approach to Quantum Phase Observables". Annals of Physics. 237 (1): 1–11. Bibcode:1995AnPhy.237....1B. doi:10.1006/aphy.1995.1001.
  77. Bose, Satyendra Nath (1924). "Plancks Gesetz und Lichtquantenhypothese". Zeitschrift für Physik (in German). 26 (1): 178–181. Bibcode:1924ZPhy...26..178B. doi:10.1007/BF01327326. S2CID 186235974.
  78. Einstein, Albert (1924). "Quantentheorie des einatomigen idealen Gases". Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse (in German). 1924: 261–267.
  79. Einstein, Albert (1925). Quantentheorie des einatomigen idealen Gases, Zweite Abhandlung (in German). Vol. 1925. pp. 3–14. doi:10.1002/3527608958.ch28. ISBN 978-3-527-60895-9. {{cite book}}: |journal= ignored (help)
  80. Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, Carl E.; Cornell, Eric Allin (1995). "Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor". Science. 269 (5221): 198–201. Bibcode:1995Sci...269..198A. doi:10.1126/science.269.5221.198. JSTOR 2888436. PMID 17789847. S2CID 540834.
  81. Cuneo, Michael (1999-02-18). "Physicists Slow Speed of Light". Harvard Gazette. Archived from the original on 2000-10-15. Retrieved 2023-12-07.
  82. "Light Changed to Matter, Then Stopped and Moved". www.photonics.com. Archived from the original on 2019-04-02. Retrieved 2023-12-07.
  83. Streater, R. F.; Wightman, A. S. (1989). PCT, Spin and Statistics, and All That. Addison-Wesley. ISBN 978-0-201-09410-7.
  84. Einstein, Albert (1916). "Strahlungs-emission und -absorption nach der Quantentheorie". Verhandlungen der Deutschen Physikalischen Gesellschaft (in German). 18: 318–323. Bibcode:1916DPhyG..18..318E.
  85. Wilson, J.; Hawkes, F. J. B. (1987). Lasers: Principles and Applications. New York: Prentice Hall. Section 1.4. ISBN 978-0-13-523705-2.
  86. Einstein, Albert (1916). "Strahlungs-emission und -absorption nach der Quantentheorie". Verhandlungen der Deutschen Physikalischen Gesellschaft (in German). 18: 318–323. Bibcode:1916DPhyG..18..318E. p. 322: Die Konstanten A m n {\displaystyle A_{m}^{n}} and B m n {\displaystyle B_{m}^{n}} würden sich direkt berechnen lassen, wenn wir im Besitz einer im Sinne der Quantenhypothese modifizierten Elektrodynamik und Mechanik wären."
  87. Dirac, Paul A. M. (1926). "On the Theory of Quantum Mechanics". Proceedings of the Royal Society A. 112 (762): 661–677. Bibcode:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133.
  88. ^ Dirac, Paul A. M. (1927). "The Quantum Theory of the Emission and Absorption of Radiation". Proceedings of the Royal Society A. 114 (767): 243–265. Bibcode:1927RSPSA.114..243D. doi:10.1098/rspa.1927.0039.
  89. ^ Dirac, Paul A. M. (1927b). "The Quantum Theory of Dispersion". Proceedings of the Royal Society A. 114 (769): 710–728. Bibcode:1927RSPSA.114..710D. doi:10.1098/rspa.1927.0071.
  90. Heisenberg, Werner; Pauli, Wolfgang (1929). "Zur Quantentheorie der Wellenfelder". Zeitschrift für Physik (in German). 56 (1–2): 1. Bibcode:1929ZPhy...56....1H. doi:10.1007/BF01340129. S2CID 121928597.
  91. Heisenberg, Werner; Pauli, Wolfgang (1930). "Zur Quantentheorie der Wellenfelder". Zeitschrift für Physik (in German). 59 (3–4): 139. Bibcode:1930ZPhy...59..168H. doi:10.1007/BF01341423. S2CID 186219228.
  92. Fermi, Enrico (1932). "Quantum Theory of Radiation". Reviews of Modern Physics. 4 (1): 87. Bibcode:1932RvMP....4...87F. doi:10.1103/RevModPhys.4.87.
  93. Born, Max (1926). "Zur Quantenmechanik der Stossvorgänge". Zeitschrift für Physik (in German). 37 (12): 863–867. Bibcode:1926ZPhy...37..863B. doi:10.1007/BF01397477. S2CID 119896026.
  94. Born, Max (1926). "Quantenmechanik der Stossvorgänge". Zeitschrift für Physik (in German). 38 (11–12): 803. Bibcode:1926ZPhy...38..803B. doi:10.1007/BF01397184. S2CID 126244962.
  95. Pais, A. (1986). Inward Bound: Of Matter and Forces in the Physical World. Oxford University Press. p. 260. ISBN 978-0-19-851997-3. Specifically, Born claimed to have been inspired by Einstein's never-published attempts to develop a "ghost-field" theory, in which point-like photons are guided probabilistically by ghost fields that follow Maxwell's equations.
  96. Debye, Peter (1910). "Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung". Annalen der Physik (in German). 33 (16): 1427–1434. Bibcode:1910AnP...338.1427D. doi:10.1002/andp.19103381617. Archived from the original on 2020-03-14. Retrieved 2019-08-25.
  97. Born, Max; Heisenberg, Werner; Jordan, Pascual (1925). "Quantenmechanik II". Zeitschrift für Physik (in German). 35 (8–9): 557–615. Bibcode:1926ZPhy...35..557B. doi:10.1007/BF01379806. S2CID 186237037.
  98. Jaeger, Gregg (2019). "Are virtual particles less real?" (PDF). Entropy. 21 (2): 141. Bibcode:2019Entrp..21..141J. doi:10.3390/e21020141. PMC 7514619. PMID 33266857. Archived (PDF) from the original on 2023-06-11. Retrieved 2021-05-19.
  99. Zee, Anthony (2003). Quantum Field Theory in a Nutshell. Princeton, New Jersey: Princeton University Press. ISBN 0-691-01019-6. OCLC 50479292.
  100. Itzykson, C.; Zuber, J.-B. (1980). Quantum Field Theory. McGraw-Hill. Photon–photon-scattering section 7–3–1, renormalization chapter 8–2. ISBN 978-0-07-032071-0.
  101. Weiglein, G. (2008). "Electroweak Physics at the ILC". Journal of Physics: Conference Series. 110 (4): 042033. arXiv:0711.3003. Bibcode:2008JPhCS.110d2033W. doi:10.1088/1742-6596/110/4/042033. S2CID 118517359.
  102. ^ Ryder, L. H. (1996). Quantum field theory (2nd ed.). England: Cambridge University Press. ISBN 978-0-521-47814-4.
  103. Sheldon Glashow Nobel lecture Archived 2008-04-18 at the Wayback Machine, delivered 8 December 1979.
  104. Abdus Salam Nobel lecture Archived 2008-04-18 at the Wayback Machine, delivered 8 December 1979.
  105. Steven Weinberg Nobel lecture Archived 2008-04-18 at the Wayback Machine, delivered 8 December 1979.
  106. E.g., chapter 14 in Hughes, I.S. (1985). Elementary particles (2nd ed.). Cambridge University Press. ISBN 978-0-521-26092-3.
  107. Bauer, T.H.; Spital, R.D.; Yennie, D. R.; Pipkin, F.M. (1978). "The hadronic properties of the photon in high-energy interactions". Reviews of Modern Physics. 50 (2): 261. Bibcode:1978RvMP...50..261B. doi:10.1103/RevModPhys.50.261.
  108. Sakurai, J.J. (1960). "Theory of strong interactions". Annals of Physics. 11 (1): 1–48. Bibcode:1960AnPhy..11....1S. doi:10.1016/0003-4916(60)90126-3.
  109. Walsh, T.F.; Zerwas, P. (1973). "Two-photon processes in the parton model". Physics Letters B. 44 (2): 195. Bibcode:1973PhLB...44..195W. doi:10.1016/0370-2693(73)90520-0.
  110. Witten, E. (1977). "Anomalous cross section for photon–photon scattering in gauge theories". Nuclear Physics B. 120 (2): 189–202. Bibcode:1977NuPhB.120..189W. doi:10.1016/0550-3213(77)90038-4.
  111. Nisius, R. (2000). "The photon structure from deep inelastic electron–photon scattering". Physics Reports. 332 (4–6): 165–317. arXiv:hep-ex/9912049. Bibcode:2000PhR...332..165N. doi:10.1016/S0370-1573(99)00115-5. S2CID 119437227.
  112. E.g., section 10.1 in Dunlap, R. A. (2004). An Introduction to the Physics of Nuclei and Particles. Brooks/Cole. ISBN 978-0-534-39294-9.
  113. Radiative correction to electron mass section 7–1–2, anomalous magnetic moments section 7–2–1, Lamb shift section 7–3–2 and hyperfine splitting in positronium section 10–3 in Itzykson, C.; Zuber, J.-B. (1980). Quantum Field Theory. McGraw-Hill. ISBN 978-0-07-032071-0.
  114. E.g. sections 9.1 (gravitational contribution of photons) and 10.5 (influence of gravity on light) in Stephani, H.; Stewart, J. (1990). General Relativity: An Introduction to the Theory of Gravitational Field. Cambridge University Press. pp. 86 ff, 108 ff. ISBN 978-0-521-37941-0.
  115. Polaritons section 10.10.1, Raman and Brillouin scattering section 10.11.3 in Patterson, J. D.; Bailey, B. C. (2007). Solid-State Physics: Introduction to the Theory. Springer. ISBN 978-3-540-24115-7.
  116. "The Solar Interior". Marshall Space Flight Center: Solar Physics. National Aeronautics and Space Commission. Retrieved 4 December 2024.
  117. Koupelis, Theo; Kuhn, Karl F. (2007). In Quest of the Universe. Jones and Bartlett Canada. p. 102. ISBN 9780763743871. Archived from the original on 2024-05-12. Retrieved 2020-11-29.
  118. E.g. section 11-5 C in Pine, S. H.; Hendrickson, J. B.; Cram, D. J.; Hammond, G. S. (1980). Organic Chemistry (4th ed.). McGraw-Hill. ISBN 978-0-07-050115-7.
  119. Nobel lecture given by G. Wald on December 12, 1967, online at nobelprize.org: The Molecular Basis of Visual Excitation Archived 2016-04-23 at the Wayback Machine.
  120. Photomultiplier section 1.1.10, CCDs section 1.1.8, Geiger counters section 1.3.2.1 in Kitchin, C. R. (2008). Astrophysical Techniques. Boca Raton, Florida: CRC Press. ISBN 978-1-4200-8243-2.
  121. Waymouth, John (1971). Electric Discharge Lamps. Cambridge, Massachusetts: The M.I.T. Press. ISBN 978-0-262-23048-3.
  122. Denk, W.; Svoboda, K. (1997). "Photon upmanship: Why multiphoton imaging is more than a gimmick". Neuron. 18 (3): 351–357. doi:10.1016/S0896-6273(00)81237-4. PMID 9115730. S2CID 2414593.
  123. Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. Springer. pp. 529 ff. ISBN 978-0-387-31278-1.
  124. Jennewein, T.; Achleitner, U.; Weihs, G.; Weinfurter, H.; Zeilinger, A. (2000). "A fast and compact quantum random number generator". Review of Scientific Instruments. 71 (4): 1675–1680. arXiv:quant-ph/9912118. Bibcode:2000RScI...71.1675J. doi:10.1063/1.1150518. S2CID 13118587.
  125. Stefanov, A.; Gisin, N.; Guinnard, O.; Guinnard, L.; Zbiden, H. (2000). "Optical quantum random number generator". Journal of Modern Optics. 47 (4): 595–598. doi:10.1080/095003400147908.
  126. Introductory-level material on the various sub-fields of quantum optics can be found in Fox, M. (2006). Quantum Optics: An introduction. Oxford University Press. ISBN 978-0-19-856673-1 – via Google Books.
  127. Hignett, Katherine (16 February 2018). "Physics creates new form of light that could drive the quantum computing revolution". Newsweek. Archived from the original on 25 April 2021. Retrieved 17 February 2018.
  128. Liang, Qi-Yu; et al. (16 February 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC 6467536. PMID 29449489.

Further reading

By date of publication
Education with single photons

External links

  • Quotations related to Photon at Wikiquote
  • The dictionary definition of photon at Wiktionary
  • Media related to Photon at Wikimedia Commons
Particles in physics
Elementary
Fermions
Quarks
Leptons
Bosons
Gauge
Scalar
Ghost fields
Hypothetical
Superpartners
Gauginos
Others
Others
Composite
Hadrons
Baryons
Mesons
Exotic hadrons
Others
Hypothetical
Baryons
Mesons
Others
Quasiparticles
Lists
Related
Physics portal
Quantum electrodynamics
Formalism
Particles
Concepts
Processes
See also: Template:Quantum mechanics topics
Categories: