Misplaced Pages

Draft:Erwin-Félix Lewy-Bertaut: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 21:15, 26 July 2023 editJCW-CleanerBot (talk | contribs)Bots129,453 editsm Félix Bertaut and crystallography (1946-2003): task, replaced: Acta Cryst. → Acta Crystallogr. (6)Tag: AWB← Previous edit Revision as of 03:51, 27 December 2024 edit undoVaudevillianScientist (talk | contribs)Autopatrolled, Extended confirmed users9,654 editsNo edit summaryTag: 2017 wikitext editorNext edit →
(29 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{AfC submission|t||ts=20230606104906|u=AvdL34|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->{{Infobox scientist {{AFC submission|d|v|u=AvdL34|ns=118|decliner=Ldm1954|declinets=20231105023436|reason2=npov|ts=20230818144613}} <!-- Do not remove this line! -->
| birth_date = 9 February 1913
| birth_place = Leobschütz (Germany)
| death_date = 6 November 2003
| death_place = Grenoble (France)
| nationality = French
| doctoral_advisor = Louis Néel
| known_for = Bertaut-Warren-Averbach law on the granulometry of powders
Magnetic orders and structures of rare earth ferrite garnets
Impulse and strong contribution to the setting up of the European Institut Laue- Langevin
| awards = Chevalier de la Légion d’honneur, Commandeur de l’Ordre national du mérite
Doctor Honoris Causa of the Universities of Genève, Xanthi Francfort, Uppsala, Helsinki
}}
Erwin-Félix Lewy-Bertaut, born on 9 February 1913 in ] (Poland, then Germany) and died on 6 November 2003 in ], France, was a French scientist renowned internationally for his work in the fields of neutron scattering and crystallography.


{{AFC comment|1=This is not written in close to an appropriate format. It needs a complete rewrite, at the moment it is a biography. ] (]) 02:34, 5 November 2023 (UTC)}}
Born as Erwin Lewy in ] (then in Germany), he received a training as a lawyer. As his family was Jewish, when the Nazis came to power he left Germany for France, becoming a French citizen in 1936 and starting a scientific career as a chemical engineer. At the start of the Second World War, he joined the French army and, following the defeat of 1940, his military commander gave him the papers of a deceased soldier and a new identity: Félix Bertaut. His family, whom he had brought to Bordeaux, were arrested and disappeared into the camps in Germany. He then went to Paris and Grenoble to work with ], where he learned about ] and ] and became a crystallographer and a physicist of magnetism. He also became a pioneer in ] and, with Louis Néel, played a leading role in the creation of the European research institute ] (Institut Laue-Langevin). He was a man of great culture and the impact of his scientific studies meant that he held positions of responsibility in the main international crystallography and physics organisations. He was a member of the French ].


----
== From Erwin Lewy to Félix Bertaut (1913 - 1946) ==
Erwin Lewy grew up in a traditional Jewish family. In 1930, his mother died and the whole family moved to Gleiwitz in an atmosphere of economic crisis and the rise of Nazism. In 1931, Erwin Lewy studied law in Freiburg and then in Breslau (now Wrocław). He was twenty when ] came to power in Germany, where a "numerus clausus" virtually banned Jews from attending university. Lewy was attacked by a Hitler youth group. This atmosphere of violence and the reading of ] made him aware of the seriousness of the situation. Deeply francophile, he decided to emigrate to Paris in France. In the end, however, he went to Bordeaux, where he was awarded a scholarship from the Rothschild Foundation and enrolled at university. There he obtained a degree in chemical engineering as well as a degree in physics and mathematics. The future Nobel Prize winner ]<ref>Alfred Kastler, Nobel laureate for physics in 1994 “”.</ref> was one of his teachers. To supplement his income, he gave lessons in mathematics and German, and had as a pupil the future academician ].


{{Short description|French scientist}}
Erwin Lewy obtained French nationality in 1936 and in February 1939, aware of the danger of Nazism, he brought his family to live with him in Talence near Bordeaux. Just before the outbreak of the Second World War, he interrupted his initial doctoral work on rosin to enlist as a volunteer in the French army. When the war broke out in 1940, Colonel Faure gave him the military record book of a missing soldier, Félix Bertaut. This was to be his only identity document for a long time and, faithful to this unknown Frenchman who enabled him to conceal his identity, he kept this name for good. He was hired as a chemical engineer in the unoccupied zone in ], where he worked on improving the strength of bicycle brakes made from agglomerated cork, which was important because bicycles were almost the only means of transport available at the time. The French police in the free zone were under orders from Vichy, and Félix Bertaut was unable to prevent the Nazis from kidnapping his family and his rabbi father in Bordeaux, who disappeared into the concentration camps; he would only learn in 1978 that they had been deported to Auschwitz, via Drancy.
{{Draft topics|biography|western-europe|politics-and-government|stem}}
{{AfC topic|bdp}}


{{Infobox scientist
To avoid police checks and escape the Obligatory Labour Service, he was forced to go to Paris, where Alfred Kastler suggested he join Marcel Mathieu at the Laboratoire Central des Poudres (L.C.P.). He then worked with Emmanuel Grison - the future director of the Centre Atomique de Saclay - who taught him how to use the Tables Internationales pour la Détermination des Structures (International Tables for the Determination of Structures). This was his first contact with crystallography. However, following an unfortunate police check on the registration number of his bicycle, he was summoned to the Paris Prefecture. Following Marcel Mathieu's recommendations, the next day he took the train with a mission order signed by the director of the L.C.P. to Grenoble, then in the Italian-occupied zone, to visit the future Nobel Prize winner Louis Néel<ref>Louis Néel, Nobel laureate for physics in 1970 “”.</ref>, who was also temporarily withdrawn from the University of Strasbourg. Louis Néel was continuing his work on magnetism<ref>L. Néel, ]; ''ibid.'' ].</ref>, begun in ]'s laboratory. His team of researchers (most of whom had emigrated from occupied France) included Jacques Mehring, who had also come from the L.C.P., Robert Forrer, Noël Felici and Louis Weil. Félix Bertaut's knowledge of crystallography proved invaluable to the group, who worked in the Institut Fourier at Grenoble's Faculty of Science, where he and Jacques Mehring built a rudimentary X-ray machine.
| image =
| name = Erwin-Félix Lewy-Bertaut
| birth_name = Erwin Lewy
| alt = Félix Bertaut
| birth_date = {{birth_date|1913|2|9}}
| birth_place = ], Germany
| death_date = {{death_date_and_age|2003|11|6 |1913|2|9}}
| death_place = ], France
| nationality = French
| doctoral_advisor = ]
| thesis_title = Etude aux rayons X des dimensions des domaines de Bragg dans les poudres polycristallines. Application à l'étude de la texture et structure de poudres de fer pyrophoriques et de leurs propriétés magnétiques
| thesis_url = https://www.google.com/books/edition/_/nrI50AEACAAJ?hl=en
| thesis_year = 1953
| known_for = ]<br>]
| awards = Chevalier de la Légion d’honneur, Commandeur de l’Ordre national du mérite
}}
'''Erwin-Félix Lewy-Bertaut''' (9 February 1913 – 6 November 2003), also known separately as '''Erwin Lewy''' and '''Félix Bertaut''', or '''E. F. Bertaut''', was a French scientist renowned internationally for his work in the fields of ] and ].<ref name=iucr>{{Cite journal |last=De Bergevin |first=F. |last2=Hodeau |first2=J. L. |last3=Schweizer |first3=J. |date=2004-04-01 |title=Erwin Félix Lewy-Bertaut (1913–2003) |url=https://scripts.iucr.org/cgi-bin/paper?S0021889804004376 |journal=Journal of Applied Crystallography |volume=37 |issue=2 |pages=349–350 |doi=10.1107/S0021889804004376 |issn=0021-8898}}</ref><ref>{{Cite journal |last=Férey |first=Gérard |last2=Hodeau |first2=Jean-Louis |date=2015-02-01 |title=The life and achievements of Erwin-Félix Lewy-Bertaut (1913–2003) |url=https://iopscience.iop.org/article/10.1088/0031-8949/90/2/028001 |journal=Physica Scripta |volume=90 |issue=2 |pages=028001 |doi=10.1088/0031-8949/90/2/028001 |issn=0031-8949}}</ref><ref>{{Cite web |title=CTHS - LEWY Erwin dit Félix BERTAUT |url=https://cths.fr/an/savant.php?id=111797 |website=cths.fr}}</ref>


As his family was Jewish, when the Nazis came to power he left Germany for France, becoming a French citizen in 1936 and starting a scientific career as a chemical engineer. At the start of the Second World War, he joined the French army and, following the defeat of 1940, his military commander gave him the papers of a deceased soldier and a new identity: Félix Bertaut. His family, whom he had brought to Bordeaux, were arrested and disappeared into the camps in Germany. He then went to Paris and Grenoble to work with ], where he learned about ] and ] and became a crystallographer and a physicist of magnetism. He also became a pioneer in ] and, with Louis Néel, played a leading role in the creation of the European research institute ] (Institut Laue-Langevin). He held positions of responsibility in the main international crystallography and physics organisations. He was a member of the French ].
After the war, it was with the help of this team that Louis Néel founded the Laboratoire d'Electrostatique et de Physique du Métal (L.E.P.M.) in 1946, which was the first CNRS laboratory outside the Paris region. It included electrostatics under N. Felici, very low temperatures under L. Weil, magnetism under L. Néel and X-ray diffraction under E. F. Bertaut. Félix Bertaut, who had arrived in 1943 before the Liberation "without any qualifications", took over Erwin Lewy's qualifications in 1946 and obtained a research grant from the ] (CNRS) under his wartime identity, "Félix Bertaut".


== Biography ==
== Félix Bertaut and crystallography (1946-2003) ==
Lewy-Bertaut was born with the name Erwin Lewy to Jewish parents in ] of ] (then in Germany). The year 1930 marked a significant shift as his mother passed away, prompting their entire family's relocation to ] amidst an era of economic turmoil and the ascent of Nazism. Following this, in 1931, Lewy embarked on his legal studies first at the ] and subsequently in ] (now ]). As Hitler's ascendancy to power unfurled in Germany, instituting a "]" that effectively precluded Jewish individuals from university access, Lewy-Bertaut left for ]. There, the Rothschild Foundation bestowed upon him a scholarship, facilitating his enrollment at the university. In Bordeaux, Lewy not only achieved a degree in chemical engineering but also secured degrees in physics and mathematics. Noteworthy among his instructors was the eventual Nobel laureate, ]<ref>Alfred Kastler, Nobel laureate for physics in 1994 “”.</ref>. To bolster his financial resources, Lewy undertook roles as a mathematics and German tutor. Among his pupils was the future ] ].
In 1946, Félix Bertaut chose a new subject for his doctoral thesis: "X-ray studies of the dimensions of Bragg domains in polycrystalline powders. - Application to the study of the texture and structure of pyrophoric iron powders and their magnetic properties". In this thesis work, he first distinguished between the size of the grains themselves and their distribution<ref>F. Bertaut (1949a) ; ''ibid.'' (1949b) ; ''ibid.'' (1950) ]; ''ibid.'' (1952) ].  </ref>. This knowledge of the grain size of iron powders was necessary for Louis Néel's magnetism studies, as Louis Weil had just succeeded in synthesising iron powders with small particles that are good materials for permanent magnets. Part of this thesis had an industrial outlet because these excellent iron-based magnets, produced by the local industry UGINE using waste from the buttons of the company ARaymond, were used in particular in bicycle dynamos.


Lewy-Bertaut acquired French citizenship in 1936. In February 1939, fully aware of the peril of Nazism, he relocated his family to ], near Bordeaux and voluntarily join the French army. At the onset of the conflict in 1940, Colonel Faure entrusted him with the military records of a missing soldier, Félix Bertaut, and he adopted this name permanently. Lewy-Bertaut was later employed as a chemical engineer in the unoccupied region in ], where he focused on enhancing the durability of bicycle brakes crafted from agglomerated cork. To elude police inspections and evade mandatory labor service, he went to Paris, where he collaborated with Marcel Mathieu at the Central Laboratory for Powders (L.C.P.). Subsequently, he partnered with Emmanuel Grison, who tutored him in the utilization of the ]. Regrettably, a bicycle registration check by the police led to his summons to the Paris Prefecture. Adhering to Marcel Mathieu's counsel, he embarked on a train journey the next day, armed with a mission directive endorsed by the L.C.P.'s director, bound for Grenoble in the Italian-occupied zone. His purpose was to meet Louis Néel,<ref>Louis Néel, Nobel laureate for physics in 1970 “”.</ref> the future Nobel laureate, who was temporarily withdrawn from the ] and remained engrossed in magnetic research<ref>{{cite journal |last1=Néel |first1=L. |year=1932 |title=Influence des fluctuations du champ moléculaire sur les propriétés magnétiques des corps |url=https://hal.archives-ouvertes.fr/hal-02888373/file/anphys19321018p5.pdf |journal=Annales de Physique |volume=10 |issue=18 |pages=5–105 |bibcode=1932AnPh...10....5N |doi=10.1051/anphys/193210180005}}</ref><ref>{{cite journal |last1=Néel |first1=L. |year=1936 |title=Propriétés magnétiques de l'état métallique et énergie d'interaction entre atomes magnétiques |url=https://hal.archives-ouvertes.fr/hal-02888365/file/N%C3%A9el%20-%201936%20-%20Propri%C3%A9t%C3%A9s%20magn%C3%A9tiques%20de%20l%27%C3%A9tat%20m%C3%A9tallique%20et%20%C3%A9ne.pdf |journal=Annales de Physique |volume=11 |issue=5 |pages=232–279 |bibcode=1936AnPh...11..232N |doi=10.1051/anphys/193611050232}}</ref> that had originated in ]'s laboratory. After the war, Louis Néel founded the ] (now Institut Néel) in 1946, which was the first ] laboratory outside the Paris region. It included electrostatics under Noël Felici, very low temperatures under Louis Weil, magnetism under ], and X-ray diffraction under Lewy-Bertaut. Lewy-Bertaut also took over Erwin Lewy's qualifications in 1946 and obtained a research grant from the ] (CNRS) under his wartime identity, "Félix Bertaut".
Félix Bertaut submitted his thesis in 1949, with the great crystallographer André Guinier as examiner. At the time, this work was a highly original application of X-ray diffraction, and this type of X-ray diffraction studies of powder granulometry has since developed considerably, but the method established by Bertaut and at the same time by Warren and Averbach<ref>B.E. Warren & B.L. Averbach (1950). ] & ''ibid.'' (1952) ],</ref> , known as the Bertaut-Warren-Averbach method, remains a classic and a cornerstone of this discipline.


Immediately after his thesis, Félix Bertaut developed the group at the L.E.P.M. that formed the basis of the X-ray department to carry out research in ], a science that enables the atomic arrangements in solids to be determined using X-ray diffraction, with the aim of establishing the relationship between crystalline structure and magnetic properties. Next, Félix Bertaut and his group, along with Francis Forrat and Professor René Pauthenet, distinguished themselves with their work on garnet ferrites<ref>R. Pauthenet and P. Blum, ; F. Bertaut and F. Forrat, .</ref>, from which the theory of antiferromagnetism and ferrimagnetism was built up. These garnets were the symbol of the joint work of L. Néel, F. Bertaut and R. Pauthenet: this is why E.F. Lewy-Bertaut had them engraved on his sword as an Academician. These ferrites are currently important materials for ] and ] (such as mobile phones). In 1946, Lewy-Bertaut conducted his thesis work under the supervision of Louis Néel. In this thesis work, he first distinguished between the size of the grains themselves and their distribution. This knowledge of the grain size of iron powders was necessary for Louis Néel's magnetism studies, as Louis Weil had just succeeded in synthesising iron powders with small particles that are good materials for permanent magnets. Part of this thesis had an industrial outlet because these excellent iron-based magnets, produced by the local industry UGINE using waste from the buttons of the company ARaymond, were used in particular in bicycle dynamos.<ref>{{Cite journal |last=Hahn |first=Theo |date=2004-04-01 |title=Félix Bertaut, space groups and the International Tables for Crystallography |url=https://scripts.iucr.org/cgi-bin/paper?S0021889804004443 |journal=Journal of Applied Crystallography |volume=37 |issue=2 |pages=350–351 |doi=10.1107/S0021889804004443 |issn=0021-8898}}</ref> Lewy-Bertaut submitted his thesis in 1949 with the great crystallographer ] as examiner. At the time, this work was a highly original application of X-ray diffraction, and this type of X-ray diffraction studies of powder granulometry has since developed considerably, but the method established by Bertaut and at the same time by Warren and Averbach, known as the Bertaut-Warren-Averbach method, remains a classic and a cornerstone of this discipline.<ref>{{Cite journal |last=Leoni |first=M. |date=2019 |title=The Warren–Averbach method and its variations |url=https://onlinelibrary.wiley.com/iucr/itc/Ha/ch3o6v0001/sec3o6o2o3/ |journal=urn:isbn:978-1-118-41628-0 |language=en |volume=H |pages=288–303 |doi=10.1107/97809553602060000951}}</ref> Immediately after his thesis, Lewy-Bertaut developed the group at the L.E.P.M. that formed the basis of the X-ray department to carry out research in ], a science that enables the atomic arrangements in solids to be determined using X-ray diffraction, with the aim of establishing the relationship between crystalline structure and magnetic properties. Next, Félix Bertaut and his group, along with Francis Forrat and Professor René Pauthenet, distinguished themselves with their work on garnet ferrites, from which the theory of antiferromagnetism and ferrimagnetism was built up. These garnets were the symbol of the joint work of L. Néel, F. Bertaut and R. Pauthenet: this is why E.F. Lewy-Bertaut had them engraved on his sword as an Academician. These ferrites are currently important materials for ] and ] (such as mobile phones).


E.F. Bertaut was involved in several other aspects of crystallography. He solved the structure of complex compounds such as the non-stoichiometric pyrrhotite, Fe<sub>1-x</sub>S<ref>E.F. Bertaut (1953) ].</ref>. He developed what is known as structure factor algebra<ref>E.F. Bertaut (1956) ]; (1957) ]; (1959) ]; (1959) ].</ref>. He made an enormous contribution to neutron crystallography. He extended the use of group theory in crystallography, particularly for magnetic structures<ref>E.F. Bertaut (1968) ].</ref>. When the ] (IUCr) decided to finalise the volume on the symmetry of space groups in the International Tables of Crystallography, he was a member of the ad hoc committee and contributed in particular to the definition of magnetic groups<ref>E.F. Bertaut and H. Wondratschek (1971) ].</ref>. He used the symmetry of crystals to propose all possible magnetic structures. This "Bertaut method" was very useful for complex structures, and even more so before the availability of computers. Of course, his students had to apply this method anyway. At the same time, he did not forget his training as a chemist and, in 'his' two laboratories, chemical syntheses of new materials continually fed into crystallographic studies, mainly for a better understanding of magnetism. One of his merits is that he was able to maintain close contact between theory and experimental applications. Lewy-Bertaut was involved in several other aspects of crystallography. He solved the structure of complex compounds such as the non-stoichiometric pyrrhotite, Fe<sub>1-x</sub>S<ref>{{cite journal |doi=10.1107/S0365110X53001502 |title=Contribution à l'étude des structures lacunaires: La pyrrhotine |year=1953 |last1=Bertaut |first1=E. F. |journal=Acta Crystallographica |volume=6 |issue=6 |pages=557–561 |bibcode=1953AcCry...6..557B }}</ref>. He developed what is known as structure factor algebra<ref name=iucr></ref>. He made an enormous contribution to neutron crystallography. He extended the use of group theory in crystallography, particularly for magnetic structures<ref>{{cite journal |doi=10.1107/S0567739468000306 |title=Representation analysis of magnetic structures |year=1968 |last1=Bertaut |first1=E. F. |journal=Acta Crystallographica Section A |volume=24 |issue=1 |pages=217–231 |bibcode=1968AcCrA..24..217B }}</ref>. When the ] (IUCr) decided to finalise the volume on the symmetry of space groups in the International Tables of Crystallography, he was a member of the ad hoc committee and contributed in particular to the definition of magnetic groups<ref>{{cite journal |doi=10.1107/S056773947100069X |title=Ordering scheme for general positions in ''International Tables'' |year=1971 |last1=Bertaut |first1=E. F. |last2=Wondratschek |first2=H. |journal=Acta Crystallographica Section A |volume=27 |issue=3 |pages=298–300 |bibcode=1971AcCrA..27..298B }}</ref>. He used the symmetry of crystals to propose all possible magnetic structures. This "Bertaut method" was very useful for complex structures, and even more so before the availability of computers. Of course, his students had to apply this method anyway. At the same time, he did not forget his training as a chemist and, in 'his' two laboratories, chemical syntheses of new materials continually fed into crystallographic studies, mainly for a better understanding of magnetism. One of his merits is that he was able to maintain close contact between theory and experimental applications. Guiding its trajectory from 1971 to 1982 was E.F. Bertaut, who initially assumed the role of Maître de Recherche and later ascended to the position of Directeur de Recherches at the CNRS. In 2007, in conjunction with the Centre de Recherche sur les Très Basses Températures (CRTBT), the Laboratoire de Magnétisme, and the Laboratoire d'Etudes des propriétés Electroniques (LEPES), this laboratory focused on crystallography became an important component of the Institut Néel at the C.N.R.S. - U.G.A.


In 1949, Félix Bertaut's research encountered a transformative moment, triggered by a one-page publication<ref>{{cite journal |last1=Shull |first1=C. G. |last2=Smart |first2=J. S. |year=1949 |title=Detection of Antiferromagnetism by Neutron Diffraction |journal=Physical Review |volume=76 |issue=8 |pages=1256–1257 |bibcode=1949PhRv...76.1256S |doi=10.1103/PhysRev.76.1256.2}}</ref> in "]" authored by two Americans: Shull (later a Nobel Prize laureate<ref>B.N. Brockhouse & C.G. Shull, Nobel laureate for physics in 1994 ""</ref> for this work) and Smart. Their work unveiled the inaugural magnetic structure derived from neutron diffraction, specifically in manganese oxide MnO. The notions proposed 15 years earlier by Louis Néel concerning antiferromagnetism underwent validation, as magnetic order could be observed on neutron diffraction images. Néel's fervor was palpable, fueling his aspiration to construct a neutron reactor in Grenoble. Félix Bertaut embarked on a 1951 journey to the United States to realize these ideas. After navigating prolonged procedures necessitated by ], he secured a Fulbright grant in 1953, allowing him to conduct research for a year in the U.S. Joining Ray Pepinski's laboratory at State College, Pennsylvania, Bertaut accessed the neutron diffraction facilities at the Brookhaven atomic center. Here, he acquainted himself with neutron methodologies under the guidance of Lester Corliss and Julius Hastings.
In 1971 (just after Louis Néel was awarded the Nobel Prize for his studies of antiferromagnetism and ferrimagnetism and their applications), the L.E.P.M. laboratory moved next to the new Centre d'Etude Nucléaire de Grenoble (C.E.N.G.), also created by L. Néel, on the former "Polygone" military site, giving rise to a group of C. N.R.S. laboratories. E.F. Bertaut, who was appointed ''Maître de Recherche'' and then ''Directeur de Recherches'' at the CNRS, was its director from 1971 to 1982, until he took an "active retirement", where he continued his research work, as a referee for scientific journals on crystallography and as an Academician.


For a considerable duration, France, led by General De Gaulle, advocated for the establishment of a nuclear research center. In 1955, Louis Néel, a reserved admiral endowed with the confidence of the French Army, presented compelling rationale (both in terms of scientific themes and techniques) that substantiated the foundation of the Centre d'Etudes Nucléaires à Grenoble (C.E.N.G.) at the "Polygone" site. Néel procured the military land within the Polygone d'Artillerie for the nominal sum of 1 franc, a gesture that facilitated the inception of the Nuclear Research Centre, which he was entrusted to lead. He entrusted E.F. Bertaut with the task of establishing a Neutron Diffraction Laboratory dedicated to crystallographic inquiries through neutron beams. Bertaut helmed this initiative from 1958 to 1976, enlisting the expertise of W. Koehler and L. Corliss in 1958 to familiarize Grenoble researchers with neutron diffraction techniques and to design the inaugural diffractometer. These instruments found homes at the Mélusine reactor (8 MW), later joined by two more at the Siloe reactor (35 MW). This laboratory functioned as a crucible, shaping a generation of scientists adept in neutron manipulation, many of whom collaborated with the Centre de Saclay. Concurrently, E.F. Bertaut, F. Forrat, P. Blum, and R. Pauthenet achieved prominence through their exploration and examination of garnet ferrites a class of materials pivotal in magnetic memory and high-frequency electronics. In the realm of crystallography, neutron diffraction, and magnetism, E.F. Bertaut and his laboratories garnered international acclaim.
In 2007, along with the Centre de Recherche sur les Très Basses Températures (CRTBT), the Laboratoire de Magnétisme and the Laboratoire d'Etudes des propriétés Electroniques (LEPES), this crystallography laboratory will be one of the building blocks of the Institut Néel at the C.N.R.S. - U.G.A.


The international reputation of Grenoble's laboratories and that of E.F. Bertaut in the domains of crystallography, neutron diffraction, and magnetism culminated in the inauguration of the inaugural international conference on neutron scattering in 1963. Within the convivial atmosphere of the conference banquet, a monumental proposal was unveiled: Louis Néel, through a speech meticulously crafted by E.F. Bertaut, introduced the idea of constructing a high-flux neutron reactor on a European scale.
== Erwin Félix Bertaut and neutrons ==
In 1949, Félix Bertaut's research was turned upside down by a one-page publication<ref>C.G. Shull and J.S. Smart, ].</ref> in "]" by two Americans, Shull (later to win a Nobel Prize<ref>B.N. Brockhouse & C.G. Shull, Nobel laureate for physics in 1994 ""</ref> for this study) and Smart, which revealed the first magnetic structure obtained by neutron diffraction in manganese oxide MnO. The hypotheses formulated 15 years earlier by Louis Néel on antiferromagnetism were verified: magnetic orders could be observed in "neutron diffraction images". Louis Néel was enthusiastic and planned to build a neutron reactor in Grenoble. To this end, Félix Bertaut travelled to the United States in 1951, and then (after lengthy procedures due to ]) received a Fulbright grant in 1953 to continue his research in the United States for a year, where he joined Ray Pepinski's laboratory at State College in Pennsylvania. Pepinski gave him access to the Brookhaven atomic centre, where he visited the neutron diffraction facilities of Lester Corliss and Julius Hastings and learned about neutron techniques.


Harnessing the backing of Néel and driven by his persuasive prowess, E.F. Bertaut championed the initiative and garnered the support of his German counterparts. His persuasion bore fruit, timely aligning with the rapprochement between the French and German populations under the leadership of De Gaulle and Adenauer. In the backdrop of this diplomatic atmosphere, the "]," signed on 22 January 1963 by Federal Chancellor ] and French President ], launched a new era of Franco-German cooperation. E.F. Bertaut's gratification was profound, and he tirelessly toiled to weave stronger bonds with German crystallographers and chemists. He emerged as a fervent advocate for the High Flux Reactor project, not only endowing it with scientific purpose but also fostering a Franco-German community of support. This concerted endeavor culminated in the realization of the Franco-German High Flux Reactor (ILL) in Grenoble, a monumental achievement facilitated by the triumph of neutron techniques pioneered by Louis Néel and E.F. Bertaut.
For some time, France and General De Gaulle had been in favour of setting up a nuclear research centre, and in 1955 Louis Néel, a reserve admiral who had the confidence of the French Army, provided decisive arguments (scientific themes and techniques) for the establishment of a Centre d'Etudes Nucléaires à Grenoble (C.E.N.G.) on the "Polygone" site. L. Néel bought the military land at the Polygone d'Artillerie for a symbolic 1 franc to create the Nuclear Research Centre, which he would direct. He asked E.F. Bertaut to set up a Neutron Diffraction Laboratory dedicated to crystallographic studies using neutron beams. E.F. Bertaut was in charge from 1958 to 1976, and from 1958 W. Koehler and L. Corliss joined him to introduce Grenoble researchers to neutron diffraction and design the first diffractometer. This and the next were installed at the Mélusine reactor (8 MW), followed by two others at the Siloe reactor (35 MW). This laboratory was the crucible for a generation of scientists familiar with neutrons, who would also work with the Centre de Saclay. It was also at this time that E.F. Bertaut, F. Forrat, P. Blum and R. Pauthenet made their mark with the discovery and study of garnet ferrites6-7, now essential materials for magnetic memories and high-frequency electronics. E.F. Bertaut and his laboratories gained international renown in crystallography, neutron diffraction and magnetism.


This milestone marked the inception of the high-flux neutron reactor. With Grenoble already established as a prominent hub for magnetism under Néel's guidance and a focal point for neutron diffraction under Bertaut's influence, the logical site for the institute's establishment was Grenoble itself. This entity was christened the "Institut Laue-Langevin" (ILL), symbolizing the confluence of crystallography and magnetism. What began as a Franco-German initiative later evolved into a pan-European endeavor, with ILL playing a pivotal role in the establishment of the European Synchrotron Radiation Facility (ESRF) in Grenoble. The ESRF, a source of synchrotron radiation, finds application across an array of disciplines including biology, medicine, chemistry, magnetism, high pressure studies, and materials science encompassing crystallography, and notably, magnetic nanostructures.
The international reputation of the Grenoble laboratories and E.F. Bertaut in crystallography, neutron diffraction and magnetism led to the first international conference on neutron scattering being held in Grenoble in 1963. It was during the banquet at this conference that the construction of a European high-flux neutron reactor was first suggested by Néel in a speech prepared by E.F. Bertaut.


As the ILL succeeded Grenoble's earlier reactors, Bertaut's intellectual legacy has been perpetuated through successive generations of his students and their disciples who continue to advance this invaluable knowledge.
Then, with the support of L. Néel, E.F. Bertaut promoted the project and convinced his German collaborators. He was certainly convincing - and it was the right idea at the right time, since the French and German peoples, under the leadership of De Gaulle and Adenauer, were at that time re-establishing friendly relations. So on 22 January 1963, the "Elysée Treaty" signed by Federal Chancellor ] and the President of the French Republic, ], launched Franco-German cooperation. E. F. Bertaut was deeply pleased with this Franco-German collaboration and worked relentlessly to forge closer links with German crystallographers and chemists. He will be one of the ambassadors of the High Flux Reactor project, giving it scientific applications and a Franco-German support community. The success of neutron techniques enabled L. Néel and E. F. Bertaut to propose and obtain the construction of the Franco-German High Flux Reactor (ILL) in Grenoble in 1967.


== Honors and distinctions ==
This led to the creation of the high-flux neutron reactor. Grenoble was considered a major centre for magnetism under L. Néel and a capital of neutron diffraction under F. Bertaut, so the institute was built in Grenoble. Its name "Institut Laue-Langevin" (ILL) expresses the combination of crystallography and magnetism. Initially Franco-German, the ILL became European and was a key partner in the construction of the European Synchrotron Radiation Facility (ESRF) in Grenoble. This source of synchrotron radiation is used in a variety of fields including biology, medicine, chemistry, magnetism, high pressure, materials science via crystallography (and among its many applications) magnetic nanostructures, etc.

The ILL has now taken over from Grenoble's first reactors, and Bertaut's students (or his students' students) continue to develop this knowledge. The seeds sown by Néel, Bertaut and their colleagues have germinated and grown.

== Research ==
E. F. Bertaut was an eclectic, highly cultured man who had learned Latin, Greek, French, English, law, music and then chemistry and crystallography and, as Professor ] said, "Félix Bertaut is a mathematician who does crystallography". The author of several hundred publications, of which a hundred or so were by his sole name, often short notes in the ] or in ], and the head of two quite different laboratories, E.F. Bertaut was also an ardent apostle of the province and of diversity. He played a major role in turning a provincial town, Grenoble, into a European scientific centre.

== Scientific distinctions and appointments ==
E.F. Bertaut's scientific reputation is international. He was a member of the IUCr executive committee between 1975 and 1981. He was co-founder of its "Neutron Diffraction" commission and co-founder and chairman of its "International Tables" and "Charge, Spin and Momentum Density" commissions. He was the IUCr representative on the Solid State Commission of the International Union of Pure and Applied Physics (IUPAP) between 1966 and 1972 and was secretary and then chairman of the Solid State Physics Section. He was editor or co-editor of numerous scientific journals. From 1958 to 1982, he was scientific advisor to various institutes: ] (CEA), CNRS, ILL, and Max Planck Institut - Stuttgart). Knight of the Legion of Honour and Commander of the National Order of Merit, he has received several awards and has been appointed Professor honoris causa of various universities: Geneva, Frankfurt, Uppsala, Helsinki and Xanthi. He was elected a full member of the ] in 1979. E.F. Bertaut's scientific reputation is international. He was a member of the IUCr executive committee between 1975 and 1981. He was co-founder of its "Neutron Diffraction" commission and co-founder and chairman of its "International Tables" and "Charge, Spin and Momentum Density" commissions. He was the IUCr representative on the Solid State Commission of the International Union of Pure and Applied Physics (IUPAP) between 1966 and 1972 and was secretary and then chairman of the Solid State Physics Section. He was editor or co-editor of numerous scientific journals. From 1958 to 1982, he was scientific advisor to various institutes: ] (CEA), CNRS, ILL, and Max Planck Institut - Stuttgart). Knight of the Legion of Honour and Commander of the National Order of Merit, he has received several awards and has been appointed Professor honoris causa of various universities: Geneva, Frankfurt, Uppsala, Helsinki and Xanthi. He was elected a full member of the ] in 1979.


== More information == == Further reading ==
*Erwin Félix Lewy-Bertaut, Notice nécrologique de l’Académie des Sciences, J. Villain (2004).

* - Les Membres de l'Académie des sciences (academie-sciences.fr)
=== Bibliography ===
*, Séance publique Académie des Sciences du 8 novembre 2005, J-Cl. Pecker (2005)
, In memoriam published on the IUCr website''.''
* May 2006, CNRS-Polygone, Grenoble.

Erwin Félix Lewy-Bertaut, Notice nécrologique de l’Académie des Sciences, J. Villain (2004).

- Les Membres de l'Académie des sciences (academie-sciences.fr)

, Séance publique Académie des Sciences du 8 novembre 2005, J-Cl. Pecker (2005)

Erwin Félix Lewy-Bertaut (1913–2003), F. De Bergevin, J-L. Hodeau, J. Schweizer (2004) ].

Félix Bertaut, space groups and the International Tables for Crystallography, Theo Hahn (2004) ].

The life and achievements of Erwin-Félix Lewy-Bertaut (1913–2003), G. Férey and J-L. Hodeau (2015) .

May 2006, CNRS-Polygone, Grenoble.


== References == == References ==
<!-- Inline citations added to your article will automatically display here. See en.wikipedia.org/WP:REFB for instructions on how to add citations. -->
{{reflist}} {{reflist}}

Revision as of 03:51, 27 December 2024

Submission declined on 5 November 2023 by Ldm1954 (talk).This submission is not adequately supported by reliable sources. Reliable sources are required so that information can be verified. If you need help with referencing, please see Referencing for beginners and Citing sources.This submission does not appear to be written in the formal tone expected of an encyclopedia article. Entries should be written from a neutral point of view, and should refer to a range of independent, reliable, published sources. Please rewrite your submission in a more encyclopedic format. Please make sure to avoid peacock terms that promote the subject.
  • If you would like to continue working on the submission, click on the "Edit" tab at the top of the window.
  • If you have not resolved the issues listed above, your draft will be declined again and potentially deleted.
  • If you need extra help, please ask us a question at the AfC Help Desk or get live help from experienced editors.
  • Please do not remove reviewer comments or this notice until the submission is accepted.

Where to get help
  • If you need help editing or submitting your draft, please ask us a question at the AfC Help Desk or get live help from experienced editors. These venues are only for help with editing and the submission process, not to get reviews.
  • If you need feedback on your draft, or if the review is taking a lot of time, you can try asking for help on the talk page of a relevant WikiProject. Some WikiProjects are more active than others so a speedy reply is not guaranteed.
How to improve a draft

You can also browse Misplaced Pages:Featured articles and Misplaced Pages:Good articles to find examples of Misplaced Pages's best writing on topics similar to your proposed article.

Improving your odds of a speedy review

To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags.

Add tags to your draft Editor resources Declined by Ldm1954 13 months ago. Last edited by VaudevillianScientist 18 hours ago. Reviewer: Inform author.
ResubmitPlease note that if the issues are not fixed, the draft will be declined again.
  • Comment: This is not written in close to an appropriate format. It needs a complete rewrite, at the moment it is a biography. Ldm1954 (talk) 02:34, 5 November 2023 (UTC)

French scientist
Erwin-Félix Lewy-Bertaut
BornErwin Lewy
(1913-02-09)February 9, 1913
Leobschütz, Germany
DiedNovember 6, 2003(2003-11-06) (aged 90)
Grenoble, France
NationalityFrench
Known forgranulometry
neutron scattering
AwardsChevalier de la Légion d’honneur, Commandeur de l’Ordre national du mérite
Scientific career
ThesisEtude aux rayons X des dimensions des domaines de Bragg dans les poudres polycristallines. Application à l'étude de la texture et structure de poudres de fer pyrophoriques et de leurs propriétés magnétiques (1953)
Doctoral advisorLouis Néel

Erwin-Félix Lewy-Bertaut (9 February 1913 – 6 November 2003), also known separately as Erwin Lewy and Félix Bertaut, or E. F. Bertaut, was a French scientist renowned internationally for his work in the fields of neutron scattering and crystallography.

As his family was Jewish, when the Nazis came to power he left Germany for France, becoming a French citizen in 1936 and starting a scientific career as a chemical engineer. At the start of the Second World War, he joined the French army and, following the defeat of 1940, his military commander gave him the papers of a deceased soldier and a new identity: Félix Bertaut. His family, whom he had brought to Bordeaux, were arrested and disappeared into the camps in Germany. He then went to Paris and Grenoble to work with Louis Néel, where he learned about solid state chemistry and X-ray diffraction and became a crystallographer and a physicist of magnetism. He also became a pioneer in neutron diffraction and, with Louis Néel, played a leading role in the creation of the European research institute ILL (Institut Laue-Langevin). He held positions of responsibility in the main international crystallography and physics organisations. He was a member of the French Academy of Sciences.

Biography

Lewy-Bertaut was born with the name Erwin Lewy to Jewish parents in Leobschütz of Silesia (then in Germany). The year 1930 marked a significant shift as his mother passed away, prompting their entire family's relocation to Gleiwitz amidst an era of economic turmoil and the ascent of Nazism. Following this, in 1931, Lewy embarked on his legal studies first at the University of Freiburg and subsequently in University of Breslau (now Wrocław). As Hitler's ascendancy to power unfurled in Germany, instituting a "numerus clausus" that effectively precluded Jewish individuals from university access, Lewy-Bertaut left for Bordeaux, France. There, the Rothschild Foundation bestowed upon him a scholarship, facilitating his enrollment at the university. In Bordeaux, Lewy not only achieved a degree in chemical engineering but also secured degrees in physics and mathematics. Noteworthy among his instructors was the eventual Nobel laureate, Alfred Kastler. To bolster his financial resources, Lewy undertook roles as a mathematics and German tutor. Among his pupils was the future academician Jean-Claude Pecker.

Lewy-Bertaut acquired French citizenship in 1936. In February 1939, fully aware of the peril of Nazism, he relocated his family to Talence, near Bordeaux and voluntarily join the French army. At the onset of the conflict in 1940, Colonel Faure entrusted him with the military records of a missing soldier, Félix Bertaut, and he adopted this name permanently. Lewy-Bertaut was later employed as a chemical engineer in the unoccupied region in Barbaste, where he focused on enhancing the durability of bicycle brakes crafted from agglomerated cork. To elude police inspections and evade mandatory labor service, he went to Paris, where he collaborated with Marcel Mathieu at the Central Laboratory for Powders (L.C.P.). Subsequently, he partnered with Emmanuel Grison, who tutored him in the utilization of the International Tables for Crystallography. Regrettably, a bicycle registration check by the police led to his summons to the Paris Prefecture. Adhering to Marcel Mathieu's counsel, he embarked on a train journey the next day, armed with a mission directive endorsed by the L.C.P.'s director, bound for Grenoble in the Italian-occupied zone. His purpose was to meet Louis Néel, the future Nobel laureate, who was temporarily withdrawn from the University of Strasbourg and remained engrossed in magnetic research that had originated in Pierre Weiss's laboratory. After the war, Louis Néel founded the Laboratoire d'Electrostatique et de Physique du Métal (now Institut Néel) in 1946, which was the first CNRS laboratory outside the Paris region. It included electrostatics under Noël Felici, very low temperatures under Louis Weil, magnetism under Louis Néel, and X-ray diffraction under Lewy-Bertaut. Lewy-Bertaut also took over Erwin Lewy's qualifications in 1946 and obtained a research grant from the Centre National de la Recherche Scientifique (CNRS) under his wartime identity, "Félix Bertaut".

In 1946, Lewy-Bertaut conducted his thesis work under the supervision of Louis Néel. In this thesis work, he first distinguished between the size of the grains themselves and their distribution. This knowledge of the grain size of iron powders was necessary for Louis Néel's magnetism studies, as Louis Weil had just succeeded in synthesising iron powders with small particles that are good materials for permanent magnets. Part of this thesis had an industrial outlet because these excellent iron-based magnets, produced by the local industry UGINE using waste from the buttons of the company ARaymond, were used in particular in bicycle dynamos. Lewy-Bertaut submitted his thesis in 1949 with the great crystallographer André Guinier as examiner. At the time, this work was a highly original application of X-ray diffraction, and this type of X-ray diffraction studies of powder granulometry has since developed considerably, but the method established by Bertaut and at the same time by Warren and Averbach, known as the Bertaut-Warren-Averbach method, remains a classic and a cornerstone of this discipline. Immediately after his thesis, Lewy-Bertaut developed the group at the L.E.P.M. that formed the basis of the X-ray department to carry out research in cristallography, a science that enables the atomic arrangements in solids to be determined using X-ray diffraction, with the aim of establishing the relationship between crystalline structure and magnetic properties. Next, Félix Bertaut and his group, along with Francis Forrat and Professor René Pauthenet, distinguished themselves with their work on garnet ferrites, from which the theory of antiferromagnetism and ferrimagnetism was built up. These garnets were the symbol of the joint work of L. Néel, F. Bertaut and R. Pauthenet: this is why E.F. Lewy-Bertaut had them engraved on his sword as an Academician. These ferrites are currently important materials for magnetic recording and microwave electronics (such as mobile phones).

Lewy-Bertaut was involved in several other aspects of crystallography. He solved the structure of complex compounds such as the non-stoichiometric pyrrhotite, Fe1-xS. He developed what is known as structure factor algebra. He made an enormous contribution to neutron crystallography. He extended the use of group theory in crystallography, particularly for magnetic structures. When the International Union of Crystallography (IUCr) decided to finalise the volume on the symmetry of space groups in the International Tables of Crystallography, he was a member of the ad hoc committee and contributed in particular to the definition of magnetic groups. He used the symmetry of crystals to propose all possible magnetic structures. This "Bertaut method" was very useful for complex structures, and even more so before the availability of computers. Of course, his students had to apply this method anyway. At the same time, he did not forget his training as a chemist and, in 'his' two laboratories, chemical syntheses of new materials continually fed into crystallographic studies, mainly for a better understanding of magnetism. One of his merits is that he was able to maintain close contact between theory and experimental applications. Guiding its trajectory from 1971 to 1982 was E.F. Bertaut, who initially assumed the role of Maître de Recherche and later ascended to the position of Directeur de Recherches at the CNRS. In 2007, in conjunction with the Centre de Recherche sur les Très Basses Températures (CRTBT), the Laboratoire de Magnétisme, and the Laboratoire d'Etudes des propriétés Electroniques (LEPES), this laboratory focused on crystallography became an important component of the Institut Néel at the C.N.R.S. - U.G.A.

In 1949, Félix Bertaut's research encountered a transformative moment, triggered by a one-page publication in "Physical Review" authored by two Americans: Shull (later a Nobel Prize laureate for this work) and Smart. Their work unveiled the inaugural magnetic structure derived from neutron diffraction, specifically in manganese oxide MnO. The notions proposed 15 years earlier by Louis Néel concerning antiferromagnetism underwent validation, as magnetic order could be observed on neutron diffraction images. Néel's fervor was palpable, fueling his aspiration to construct a neutron reactor in Grenoble. Félix Bertaut embarked on a 1951 journey to the United States to realize these ideas. After navigating prolonged procedures necessitated by McCarthyism, he secured a Fulbright grant in 1953, allowing him to conduct research for a year in the U.S. Joining Ray Pepinski's laboratory at State College, Pennsylvania, Bertaut accessed the neutron diffraction facilities at the Brookhaven atomic center. Here, he acquainted himself with neutron methodologies under the guidance of Lester Corliss and Julius Hastings.

For a considerable duration, France, led by General De Gaulle, advocated for the establishment of a nuclear research center. In 1955, Louis Néel, a reserved admiral endowed with the confidence of the French Army, presented compelling rationale (both in terms of scientific themes and techniques) that substantiated the foundation of the Centre d'Etudes Nucléaires à Grenoble (C.E.N.G.) at the "Polygone" site. Néel procured the military land within the Polygone d'Artillerie for the nominal sum of 1 franc, a gesture that facilitated the inception of the Nuclear Research Centre, which he was entrusted to lead. He entrusted E.F. Bertaut with the task of establishing a Neutron Diffraction Laboratory dedicated to crystallographic inquiries through neutron beams. Bertaut helmed this initiative from 1958 to 1976, enlisting the expertise of W. Koehler and L. Corliss in 1958 to familiarize Grenoble researchers with neutron diffraction techniques and to design the inaugural diffractometer. These instruments found homes at the Mélusine reactor (8 MW), later joined by two more at the Siloe reactor (35 MW). This laboratory functioned as a crucible, shaping a generation of scientists adept in neutron manipulation, many of whom collaborated with the Centre de Saclay. Concurrently, E.F. Bertaut, F. Forrat, P. Blum, and R. Pauthenet achieved prominence through their exploration and examination of garnet ferrites — a class of materials pivotal in magnetic memory and high-frequency electronics. In the realm of crystallography, neutron diffraction, and magnetism, E.F. Bertaut and his laboratories garnered international acclaim.

The international reputation of Grenoble's laboratories and that of E.F. Bertaut in the domains of crystallography, neutron diffraction, and magnetism culminated in the inauguration of the inaugural international conference on neutron scattering in 1963. Within the convivial atmosphere of the conference banquet, a monumental proposal was unveiled: Louis Néel, through a speech meticulously crafted by E.F. Bertaut, introduced the idea of constructing a high-flux neutron reactor on a European scale.

Harnessing the backing of Néel and driven by his persuasive prowess, E.F. Bertaut championed the initiative and garnered the support of his German counterparts. His persuasion bore fruit, timely aligning with the rapprochement between the French and German populations under the leadership of De Gaulle and Adenauer. In the backdrop of this diplomatic atmosphere, the "Elysée Treaty," signed on 22 January 1963 by Federal Chancellor Konrad Adenauer and French President Charles de Gaulle, launched a new era of Franco-German cooperation. E.F. Bertaut's gratification was profound, and he tirelessly toiled to weave stronger bonds with German crystallographers and chemists. He emerged as a fervent advocate for the High Flux Reactor project, not only endowing it with scientific purpose but also fostering a Franco-German community of support. This concerted endeavor culminated in the realization of the Franco-German High Flux Reactor (ILL) in Grenoble, a monumental achievement facilitated by the triumph of neutron techniques pioneered by Louis Néel and E.F. Bertaut.

This milestone marked the inception of the high-flux neutron reactor. With Grenoble already established as a prominent hub for magnetism under Néel's guidance and a focal point for neutron diffraction under Bertaut's influence, the logical site for the institute's establishment was Grenoble itself. This entity was christened the "Institut Laue-Langevin" (ILL), symbolizing the confluence of crystallography and magnetism. What began as a Franco-German initiative later evolved into a pan-European endeavor, with ILL playing a pivotal role in the establishment of the European Synchrotron Radiation Facility (ESRF) in Grenoble. The ESRF, a source of synchrotron radiation, finds application across an array of disciplines including biology, medicine, chemistry, magnetism, high pressure studies, and materials science encompassing crystallography, and notably, magnetic nanostructures.

As the ILL succeeded Grenoble's earlier reactors, Bertaut's intellectual legacy has been perpetuated through successive generations of his students and their disciples who continue to advance this invaluable knowledge.

Honors and distinctions

E.F. Bertaut's scientific reputation is international. He was a member of the IUCr executive committee between 1975 and 1981. He was co-founder of its "Neutron Diffraction" commission and co-founder and chairman of its "International Tables" and "Charge, Spin and Momentum Density" commissions. He was the IUCr representative on the Solid State Commission of the International Union of Pure and Applied Physics (IUPAP) between 1966 and 1972 and was secretary and then chairman of the Solid State Physics Section. He was editor or co-editor of numerous scientific journals. From 1958 to 1982, he was scientific advisor to various institutes: Commissariat à l'Energie Atomique (CEA), CNRS, ILL, and Max Planck Institut - Stuttgart). Knight of the Legion of Honour and Commander of the National Order of Merit, he has received several awards and has been appointed Professor honoris causa of various universities: Geneva, Frankfurt, Uppsala, Helsinki and Xanthi. He was elected a full member of the Académie des Sciences in 1979.

Further reading

References

  1. ^ De Bergevin, F.; Hodeau, J. L.; Schweizer, J. (2004-04-01). "Erwin Félix Lewy-Bertaut (1913–2003)". Journal of Applied Crystallography. 37 (2): 349–350. doi:10.1107/S0021889804004376. ISSN 0021-8898.
  2. Férey, Gérard; Hodeau, Jean-Louis (2015-02-01). "The life and achievements of Erwin-Félix Lewy-Bertaut (1913–2003)". Physica Scripta. 90 (2): 028001. doi:10.1088/0031-8949/90/2/028001. ISSN 0031-8949.
  3. "CTHS - LEWY Erwin dit Félix BERTAUT". cths.fr.
  4. Alfred Kastler, Nobel laureate for physics in 1994 “for the discovery and development of optical methods for studying hertzian resonances in atoms”.
  5. Louis Néel, Nobel laureate for physics in 1970 “for fundamental work and discoveries concerning antiferromagnetism and ferrimagnetism which have led to important applications in solid state physics”.
  6. Néel, L. (1932). "Influence des fluctuations du champ moléculaire sur les propriétés magnétiques des corps" (PDF). Annales de Physique. 10 (18): 5–105. Bibcode:1932AnPh...10....5N. doi:10.1051/anphys/193210180005.
  7. Néel, L. (1936). "Propriétés magnétiques de l'état métallique et énergie d'interaction entre atomes magnétiques" (PDF). Annales de Physique. 11 (5): 232–279. Bibcode:1936AnPh...11..232N. doi:10.1051/anphys/193611050232.
  8. Hahn, Theo (2004-04-01). "Félix Bertaut, space groups and the International Tables for Crystallography". Journal of Applied Crystallography. 37 (2): 350–351. doi:10.1107/S0021889804004443. ISSN 0021-8898.
  9. Leoni, M. (2019). "The Warren–Averbach method and its variations". urn:isbn:978-1-118-41628-0. H: 288–303. doi:10.1107/97809553602060000951.
  10. Bertaut, E. F. (1953). "Contribution à l'étude des structures lacunaires: La pyrrhotine". Acta Crystallographica. 6 (6): 557–561. Bibcode:1953AcCry...6..557B. doi:10.1107/S0365110X53001502.
  11. Bertaut, E. F. (1968). "Representation analysis of magnetic structures". Acta Crystallographica Section A. 24 (1): 217–231. Bibcode:1968AcCrA..24..217B. doi:10.1107/S0567739468000306.
  12. Bertaut, E. F.; Wondratschek, H. (1971). "Ordering scheme for general positions in International Tables". Acta Crystallographica Section A. 27 (3): 298–300. Bibcode:1971AcCrA..27..298B. doi:10.1107/S056773947100069X.
  13. Shull, C. G.; Smart, J. S. (1949). "Detection of Antiferromagnetism by Neutron Diffraction". Physical Review. 76 (8): 1256–1257. Bibcode:1949PhRv...76.1256S. doi:10.1103/PhysRev.76.1256.2.
  14. B.N. Brockhouse & C.G. Shull, Nobel laureate for physics in 1994 "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter" to B.N. Brockhouse "for the development of neutron spectroscopy" and to C.G. Shull "for the development of the neutron diffraction"
Categories: