Misplaced Pages

Plasma cosmology: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 14:07, 22 May 2007 editජපස (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers60,450 edits Comparison to mainstream cosmology: there are a few quantitative predictions, but not to the level of standard cosmology.← Previous edit Revision as of 16:09, 22 May 2007 edit undoජපස (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers60,450 edits Comparison to mainstream cosmology: removed totally disputed per talk.Next edit →
Line 24: Line 24:


==Comparison to mainstream cosmology== ==Comparison to mainstream cosmology==
{{totallydisputed}}
{{cosmology}} {{cosmology}}
Plasma cosmology has been developed in much less detail than mainstream cosmology and lacks many of the key predictions and features of the current models. In mainstream cosmology, detailed simulations of the ] of the universe, ], and fluctuations in the ], based on the principles of standard cosmolgy and a handful of free parameters, have been made and compared with observations, including non-trivial consistency checks. Plasma cosmology generally provides qualitative descriptions and no systematic explanation for the standard features of mainstream cosmological theories. Plasma cosmology has been developed in much less detail than mainstream cosmology and lacks many of the key predictions and features of the current models. In mainstream cosmology, detailed simulations of the ] of the universe, ], and fluctuations in the ], based on the principles of standard cosmolgy and a handful of free parameters, have been made and compared with observations, including non-trivial consistency checks. Plasma cosmology generally provides qualitative descriptions and no systematic explanation for the standard features of mainstream cosmological theories.

Revision as of 16:09, 22 May 2007

Hannes Alfvén suggested that, by scaling laboratory results by a factor of 10, he could extrapolate magnetospheric conditions. Another scaling jump of 10 was required extrapolate to galactic conditions, and a third jump of 10 was required to extrapolate to the Hubble distance.

Plasma cosmology is an non-standard cosmology that is generally attributed to Hannes Alfvén in the 1960s that attempts to explain the development of the visible universe through the interaction of electromagnetic forces on astrophysical plasma,. Alfvén developed his cosmological ideas based on scaling of observations from terrestrial laboratories and in situ space physics experiments to cosmological scales orders-of-magnitude greater. His most famous cosmological proposal was that the universe was an equal mixture of ionized matter and anti-matter in the form of so-called ambiplasma that would naturally separate as annihilation reactions occurred accompanied by a tremendous release of energy.

Plasma cosmology contradicts the current consensus of astrophysicists that Einstein's Theory of general relativity explains the origin and evolution of the universe on its largest scales, relying instead on the further development of classical mechanics and classical electrodynamics as applied to astrophysical plasmas. While in the late 1980s to early 1990s there was limited discussion over the merits of plasma cosmology, today advocates for these ideas are generally ignored by the professional cosmology community.

Cosmic plasma

Main article: astrophysical plasma

Hannes Alfvén devoted much of his professional career attempting to characterize plasmas for which he was awarded the Nobel Prize in Physics in 1970. However, while plasma physics is uncontroversially accepted to play an important role in many astrophysical phenomena due in part to plasma's ubiquity, Alfvén held to a few ideas which have not been accepted by the scientific consensus. Chief among these is the assertion that electromagnetic forces are equal in importance with gravitation on the largest scales. Alfvén came to this conclusion by simply extrapolating plasma phenomena from small scales to large scales. While magnetic fields are considered of interest to modern astrophysics in many standard smaller-scale astrophysical structure formation models with magnetic braking speeding gravitational collapse by transferring angular momentum from the contracting objects, standard large-scale structure models do not normally consider the magnetic field large enough to aid in angular momentum transfer for virializing processes in clusters. Research in these issues is ongoing, but plasma processes are not considered in theoretical modeling to play a signifcant role in structure or galaxy formation. Alfvén's models do not provide any predictions that can account for most cosmological observations including Hubble's law, the abundance of light elements, or the existence of the cosmic microwave background.

Some of the more provocative proposals of Alfvén included qualitative explanations for star formation using Birkeland currents. These plasma currents were held by Alfvén and his supporters to be responsible for many filamentary structures seen in astrophysical observations. However, there remains no direct observational evidence of such large scale plasma currents and mainstream astrophysical explanations for large-scale phenomena do not include plasma current mechanisms.

Alfvén and Klein cosmologies

File:Hannes-alfven.jpg
Hannes Alfvén (1908-1995), winning the Nobel Prize for his work on magnetohydrodynamics .

The conceptual origins of plasma cosmology were developed in 1965 by Alfvén in his book Worlds-Antiworlds, basing some of his work on the ideas Kristian Birkeland first described at the turn of the century and Oskar Klein's earlier proposal that astrophysical plasmas played an important role in galaxy formation. In 1971, Klein would extend Alfvén's proposals and develop the "Alfvén-Klein model" of cosmology. Their cosmology relied on giant astrophysical explosions resulting from a hypothetical mixing of cosmic matter and antimatter that created the universe or meta-galaxy as they preferred to speculate (see the Shapley-Curtis debate for more on the history of distinguishing between the universe and the Milky Way galaxy). This hypothetical substance that spawned the universe was termed "ambiplasma" and took the forms of proton-antiprotons (heavy ambiplasma) and electrons-positrons (light ambiplasma). In Alfvén's cosmology, the universe contained heavy symmetric ambiplasma with protective light ambiplasma, separated by double layers. According to Alfvén, such an ambiplasma would be relatively long-lived as the component particles and antiparticles would be too hot and too low-density to annihilate with each other rapidly. Annihilation radiation would emanate from the double layers of plasma and antiplasma domains. The exploding double layer was also suggested by Alfvén as a possible mechanism for the generation of cosmic rays, x-ray bursts and gamma-ray bursts.

Ambiplasma was proposed in part to explain the observed baryon asymmetry in the universe as being due to an initial condition of exact symmetry between matter and antimatter. According to Alfvén and Klein, ambiplasma would naturally form pockets of matter and pockets of antimatter that would expand outwards as annihilation between matter and antimatter occurred at the boundaries. Therefore, they concluded that we must happen to live in one of the pockets that was mostly baryons rather than antibaryons. The processes governing the evolution and characteristics of the universe at its largest scale would be governed mostly by this feature.

Alfvén postulated that the universe has always existed due to causality arguments and rejection of ex nihilo models as a stealth form of creationism. The cellular regions of exclusively matter or antimatter would appear to expand in regions local to annihilation, which Alfvén considered as a possible explanation for the observed apparent expansion of the universe as merely a local phase of a much larger history.

Further developments

While plasma cosmology has never had the support of most astronomers or physicists, researchers have continued to promote and develop the approach, and publish in the special issues of the IEEE Transactions on Plasma Science that are co-edited by plasma cosmology proponent Anthony Peratt. A few papers regarding plasma cosmology were published in other mainstream journals until the 1990s. Additionally, in 1991, Eric J. Lerner, an independent researcher in plasma physics and nuclear fusion, wrote a popular-level book supporting plasma cosmology called The Big Bang Never Happened. At that time there was renewed interest in the subject among the cosmological community (along with other non-standard cosmologies). This was due to anomalous results reported in 1987 by Andrew Lange and Paul Richardson of UC Berkeley and Toshio Matsumoto of Nagoya University that indicated the cosmic microwave background might not have a blackbody spectrum. However, the final announcement (in April 1992) of COBE satellite data corrected the earlier contradiction of the Big Bang; the level of interest in plasma cosmology has since fallen such that little research is now conducted.

Comparison to mainstream cosmology

Part of a series on
Physical cosmology
Full-sky image derived from nine years' WMAP data
Early universe
Backgrounds
Expansion · Future
Components · Structure
Components
Structure
Experiments
Scientists
Subject history

Plasma cosmology has been developed in much less detail than mainstream cosmology and lacks many of the key predictions and features of the current models. In mainstream cosmology, detailed simulations of the correlation function of the universe, primordial nucleosynthesis, and fluctuations in the cosmic microwave background radiation, based on the principles of standard cosmolgy and a handful of free parameters, have been made and compared with observations, including non-trivial consistency checks. Plasma cosmology generally provides qualitative descriptions and no systematic explanation for the standard features of mainstream cosmological theories.

For example, the standard hierarchical models of galaxy and structure formation rely on dark matter collecting into the superclusters, clusters, and galaxies seen in the universe today. The size and nature of structure are based on an initial condition from the primordial anisotropies seen in the power spectrum of the cosmic microwave background. Recent simulations show agreement between observations of galaxy surveys and N-body cosmological simulations of the Lambda-CDM model. Most astrophysicists accept dark matter as a real phenomenon and a vital ingredient in structure formation, which cannot be explained by appeal to electromagnetic processes. The mass estimates of galaxy clusters using gravitational lensing also indicate that there is a large quantity of dark matter present, an observation not explained by plasma cosmology models.

Mainstream studies also suggest that the universe is homogeneous on large scales without evidence of the very large scale structure required by plasma filamentation proposals. The largest galaxy number count to date, the Sloan Digital Sky Survey, corresponds well to the mainstream picture.

Light element production without Big Bang nucleosynthesis (as required in plasma cosmology) has been discussed in the mainstream literature and was determined to produce excessive x-rays and gamma rays beyond that observed. This issue has not been completely addressed by plasma cosmology proponents in their proposals. Additionally, from an observational point of view, the gamma rays emitted by even small amounts of matter/antimatter annihilation should be easily visible using gamma ray telescopes. However, such gamma rays have not been observed. This could be resolved by proposing, as Alfvén did, that the bubble of matter we are in is larger than the observable universe. In order to test such a model, some signature of the ambiplasma would have to be looked for in current observations, and this requires that the model be formalized to the point where detailed quantitative predictions can be made. This has not been accomplished.

Although no plasma cosmology proposal explaining the cosmic microwave background radiation has been published since COBE results were announced, explanations relying on integrated starlight do not provide any indication of how to explain the observed angular power spectrum of one part in 10 CMB anisotropies. The sensitivity and resolution of the measurement of these anisotropies was greatly advanced by WMAP and was subsequently heralded as a major confirmation of the Big Bang to the detriment of alternatives. These measurements showed the "acoustic peaks" were fit with high accuracy by the predictions of the Big Bang model and conditions of the early universe.

Plasma cosmology is not considered by the astronomical community to be a viable alternative to the Big Bang, and even its advocates agree the explanations it provides for phenomena are less detailed than those of conventional cosmology. As such, plasma cosmology has remained sidelined and viewed in the community as a proposal unworthy of serious consideration.

Further information

  • Alfvén, Hannes:
  • Peratt, Anthony:

Books

  • H. Alfvén, Worlds-antiworlds: antimatter in cosmology, (Freeman, 1966).
  • H. Alfvén, Cosmic Plasma (Reidel, 1981) ISBN 90-277-1151-8
  • E. J. Lerner, The Big Bang Never Happened, (Vintage, 1992) ISBN 0-679-74049-X
  • A. L. Peratt, Physics of the Plasma Universe, (Springer, 1992) ISBN 0-387-97575-6

References

  1. ^ Hannes Alfvén, "On hierarchical cosmology" (1983) Astrophysics and Space Science (ISSN 0004-640X), vol. 89, no. 2, Jan. 1983, p. 313-324.
  2. It is described as such by advocates and critics alike. In the February 1992 issue of Sky & Telescope ("Plasma Cosmology"), Anthony Peratt describes it as a "nonstandard picture". The open letter at www.cosmologystatement.org – which has been signed by Peratt and Lerner – notes that "today, virtually all financial and experimental resources in cosmology are devoted to big bang studies". The ΛCDM model big bang picture is typically described as the "concordance model", "standard model" or "standard paradigm" of cosmology here, and here.
  3. Helge S. Kragh, Cosmology and Controversy: The Historical Development of Two Theories of the Universe, 1996 Princeton University Press, 488 pages, ISBN 069100546X (pp.482-483)
  4. Alfven, Hannes O. G., "Cosmology in the plasma universe - an introductory exposition", IEEE Transactions on Plasma Science (ISSN 0093-3813), vol. 18, Feb. 1990, p. 5-10.
  5. Plasma cosmology advocates Anthony Peratt and Eric Lerner, in an open letter cosigned by a total of 34 authors, state "An open exchange of ideas is lacking in most mainstream conferences", and "Today, virtually all financial and experimental resources in cosmology are devoted to big bang studies".
  6. Tom Van Flandern writes in The Top 30 Problems with the Big Bang, "For the most part, these four alternative cosmologies are ignored by astronomers."
  7. H. Alfvén and C.-G. Falthammar, Cosmic electrodynamics (2nd edition, Clarendon press, Oxford, 1963). "The basic reason why electromagnetic phenomena are so important in cosmical physics is that there exist celestial magnetic fields which affect the motion of charged particles in space.... The strength of the interplanetary magnetic field is of the order of 10 gauss, which gives the ≈ 10. This illustrates the enormous importance of interplanetary and interstellar magnetic fields, compared to gravitation, as long as the matter is ionized." (p.2-3)
  8. Colafrancesco, S. and Giordano, F. The impact of magnetic field on the cluster M - T relation Astronomy and Astrophysics, Volume 454, Issue 3, August II 2006, pp.L131-L134. recount: "Numerical simulations have shown that the wide-scale magnetic fields in massive clusters produce variations of the cluster mass at the level of ~ 5 − 10% of their unmagnetized value.... Such variations are not expected to produce strong variations in the relative relation for massive clusters."
  9. See for example: Dekel, A. and Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 303, April 1, 1986, p. 39-55. where they model plasma processes in galaxy formation that is driven primarily by gravitation of cold dark matter.
  10. Alfvén, H.; Carlqvist, P., "Interstellar clouds and the formation of stars" Astrophysics and Space Science, vol. 55, no. 2, May 1978, p. 487-509.
  11. Alfvén, H., "Double layers and circuits in astrophysics", (1986) IEEE Transactions on Plasma Science (ISSN 0093-3813), vol. PS-14, Dec. 1986, p. 779-793. Based on the NASA sponsored conference "Double Layers in Astrophysics" (1986)
  12. H. Alfvén and C.-G. Falthammar, Cosmic electrodynamics (Clarendon press, Oxford, 1963). H. Alfvén, Worlds-antiworlds: antimatter in cosmology, (Freeman, 1966). O. Klein, "Arguments concerning relativity and cosmology," Science 171 (1971), 339.
  13. Hannes Alfvén, "Has the Universe an Origin" (1988) Trita-EPP, 1988, 07, p. 6. See also Anthony L. Peratt, "Introduction to Plasma Astrophysics and Cosmology" (1995) Astrophysics and Space Science, v. 227, p. 3-11: "issues now a hundred years old were debated including plasma cosmology's traditional refusal to claim any knowledge about an 'origin' of the universe (e.g., Alfvén, 1988).
  14. Alfvén, Hannes, "Cosmology: Myth or Science?" (1992) IEEE Transactions on Plasma Science (ISSN 0093-3813), vol. 20, no. 6, p. 590-600. See also
  15. (See IEEE Transactions on Plasma Science, issues in 1986, 1989, 1990, 1992, 2000, 2003, and 2007 Announcement 2007 here)
  16. See e.g. P. J. E. Peebles, Large-scale structure of the universe (Princeton, 1980).
  17. See, for example, the Virgo Consortium's large-scale simulation of "universes in boxes" with the largest voids reaching such sizes. See also F. Hoyle and M. S. Vogeley, Voids in the 2dF galaxy redshift survey, Astrophys. J. 607, 751–764 (2004) arXiv:astro-ph/0312533.
  18. See e.g. M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rept. 340 291–472 (2001) arXiv:astro-ph/9912508.
  19. P. J. E. Peebles, Principles of Physical Cosmology (Princeton, 1993). P. J. E. Peebles, Large-scale structure of the universe (Princeton, 1980).
  20. M. Tegmark et al. (SDSS collaboration), "The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey", Astrophysical J. 606 702–740 (2004). arXiv:astro-ph/0310725 The failure of alternative structure formation models is clearly indicated by the deviation of the matter power spectrum from a power law at scales larger than 0.5 h Mpc (visible here).The authors comment that their work has "thereby yet another nail into the coffin of the fractal universe hypothesis..."
  21. J.Audouze et al.', Big Bang Photosynthesis and Pregalactic Nucleosynthesis of Light Elements, 'Astrophysical Journal 293:L53-L57, 1985 June 15
  22. Epstein et al., The origin of deuterium, Nature, Vol. 263, September 16, 1976 point out that if proton fluxes with energies greater than 500 MeV were intense enough to produce the observed levels of deuterium, they would also produce about 1000 times more gamma rays than are observed.
  23. Ref. 10 in "Galactic Model of Element Formation" (Lerner, IEEE Trans. Plasma Science Vol. 17, No. 2, April 1989 ) is J.Audouze and J.Silk, "Pregalactic Systhesis of Deuterium" in Proc. ESO Workshop on "Primordial Helium", 1983, pp. 71-75 Lerner includes a paragraph on "Gamma Rays from D Production" in which he claims that the expected gamma ray level is consistent with the observations. He cites neither Audouze nor Epstein in this context, and does not explain why his result contradicts theirs.
  24. D. N. Spergel et al. (WMAP collaboration), "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters", Astrophys. J. Suppl. 148 (2003) 175.
  25. Sponsored by the Dept. of Energy, National Science Foundation, Los Alamos National Laboratories, Coalition for Plasma Science, Plasma International, Dupont, and the Air Force Office of Scientific Research (Ref)
Categories: