Revision as of 01:01, 25 November 2008 editHayson1991 (talk | contribs)242 edits →Feon's Question 1: new section← Previous edit |
Latest revision as of 11:03, 6 July 2012 edit undoHayson1991 (talk | contribs)242 edits ←Blanked the page |
(17 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
|
<math>x = \tan\left(y\right)</math><br /><br /> |
|
|
<math>1 = \sec^2\left(y\right)*\frac{dy}{dx}</math> (Chain rule, derivative of tan=sec^2)<br /><br /> |
|
|
<math>\frac{1}{\sec^2\left(y\right)} = \frac{dy}{dx}</math><br /><br /> |
|
|
<math>\cos^2\left(y\right) = \frac{dy}{dx}</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = \cos^2\left(y\right)</math><br /><br /> |
|
|
|
|
|
== 9~ == |
|
|
<math>x^{2}y + xy^2 = 6\,</math><br /><br /> |
|
|
<math>\left(2x*y + x^{2}*\frac{dy}{dx}\right) + \left(1*y^2 + x*2y\frac{dy}{dx}\right) = 0</math><br /><br /> |
|
|
<math>2xy + x^{2}\frac{dy}{dx} + y^2 + 2xy\frac{dy}{dx} = 0</math><br /><br /> |
|
|
<math>x^{2}\frac{dy}{dx} + 2xy\frac{dy}{dx} = -2xy - y^2</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = \frac{-2xy - y^2}{x^{2} + 2xy}</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = -\frac{2xy + y^2}{x^{2} + 2xy}</math><br /><br /> |
|
|
|
|
|
== Multiple u's == |
|
|
|
|
|
To Find dy/dx for<br /> |
|
|
<math>y = 2\cos\left(\left(5x\right)^2\right)</math><br /><br /> |
|
|
===The way she explains it=== |
|
|
you'll make 3 u's<br /> |
|
|
<math>\text{Let }u = 2\cos\left(u\right)</math><br /><br /> |
|
|
<math>\text{Let }u = u^2\,</math><br /><br /> |
|
|
<math>\text{Let }u = 5x\,</math><br /><br /> |
|
|
|
|
|
== Gaaah, help~~ == |
|
|
|
|
|
|
|
|
Find <math>\frac{dy}{dx}\,</math> then find <math>\frac{d^2y}{dx^2}\,</math> <br /><br /> |
|
|
|
|
|
<math>x^2 + y^2 = 1\,</math><br /><br /> |
|
|
<math>2x + 2y\frac{dy}{dx} = 0\,</math><br /><br /> |
|
|
===Find first derivative=== |
|
|
<math>\frac{dy}{dx} = \frac{-2x}{2y}\,</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = -\frac{x}{y}\,</math><br /><br /> |
|
|
===Find second derivative=== |
|
|
<math>2 + \left(2\frac{dy}{dx}*\frac{dy}{dx} + 2y*\frac{d^{2}y}{dx^2}\right) = 0\,</math><br /><br /> |
|
|
<math>2\left(\frac{dy}{dx}\right)^2 + 2y\frac{d^{2}y}{dx^2} = -2\,</math><br /><br /> |
|
|
<math>2\left(-\frac{x}{y}\right)^2 + 2y\frac{d^{2}y}{dx^2} = -2\,</math><br /><br /> |
|
|
<math>2\frac{x^2}{y^2} + 2y\frac{d^{2}y}{dx^2} = -2\,</math><br /><br /> |
|
|
<math>2y\frac{d^{2}y}{dx^2} = -2-2\frac{x^2}{y^2}\,</math><br /><br /> |
|
|
<math>\frac{d^{2}y}{dx^2} = \frac{-2-2\frac{x^2}{y^2}}{2y}\,</math><br /><br /> |
|
|
<math>\frac{d^{2}y}{dx^2} = -\frac{1}{y} - \frac{x^2}{y^3}\,</math><br /><br /> |
|
|
<math>\frac{d^{2}y}{dx^2} = -\frac{y^2}{y^3} - \frac{x^2}{y^3}\,</math><br /><br /> |
|
|
<math>\frac{d^{2}y}{dx^2} = -\frac{y^2+x^2}{y^3}\,</math><br /><br /> |
|
|
<math>\frac{d^{2}y}{dx^2} = -\frac{1}{y^3}\,</math><br /><br /> |
|
|
|
|
|
== Clock Problem ~ == |
|
|
|
|
|
===minute hand=== |
|
|
<math>x=5\cos\left(\frac{\pi}{2}-\frac{t \cdot 2\pi}{60}\right)</math><br /><br /> |
|
|
<math>y=5\sin\left(\frac{\pi}{2}-\frac{t \cdot 2\pi}{60}\right)</math><br /><br /> |
|
|
|
|
|
===hour hand=== |
|
|
<math>x=4\cos\left(\frac{\pi}{2}-\frac{t \cdot 2\pi}{12}\right)</math><br /><br /> |
|
|
<math>y=4\sin\left(\frac{\pi}{2}-\frac{t \cdot 2\pi}{12}\right)</math><br /><br /> |
|
|
|
|
|
== Piston speed ~ == |
|
|
|
|
|
<math>x_w = r\cos\left(\theta\right)</math><br /><br /> |
|
|
<math>y_w = r\sin\left(\theta\right)</math><br /><br /> |
|
|
<math>D_p = \sqrt{L^2-x_w^2}+y_w</math><br /><br /> |
|
|
<math>\frac{dD_p}{dt} = \frac{1}{2}\left(L^2-x_w^2\right)^{-\frac{1}{2}}\cdot\left(-2x_w\frac{dx_w}{dt}\right)+\frac{dy_w}{dt}</math><br /><br /> |
|
|
<math>\frac{dx_w}{dt} = -r\sin\left(\theta\right)\cdot\omega</math><br /><br /> |
|
|
<math>\frac{dy_w}{dt} = r\cos\left(\theta\right)\cdot\omega</math><br /><br /> |
|
|
<math>\theta = t\cdot\omega</math><br /><br /> |
|
|
|
|
|
== Feon's Question 1 == |
|
|
|
|
|
<math>y = \tan\left(\arcsin\left(x\right)\right)</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = \frac{\sec^2\left(\arcsin\left(x\right)\right)}{\sqrt{1-x^2}}</math><br /><br /> |
|
|
==Feon's Question 2== |
|
|
<math>y = x\cdot\arcsec\left(x\right)</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = \arcsec\left(x\right) + \frac{x}{\left|x\right|\sqrt{x^2-1}}</math><br /><br /> |
|
|
<math>\frac{dy}{dx} = \begin{cases} |
|
|
\arcsec\left(x\right) + \frac{1}{\sqrt{x^2-1}}& \mbox{if }x>0 \\ |
|
|
\arcsec\left(x\right) - \frac{1}{\sqrt{x^2-1}}& \mbox{if }x<0 |
|
|
\end{cases}</math><br /><br /> |
|
|
==Feon's Question 3== |
|
|
<math>y = x\left(\arcsin\left(x\right)\right)^2-2x+2\sqrt{1-x^2}</math><br /><br /> |
|