Revision as of 20:27, 29 August 2014 edit202.68.85.254 (talk) →Regions: confusion is unlikely← Previous edit | Revision as of 19:45, 10 October 2014 edit undoBretonbanquet (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers75,573 editsm Reverted edits by 202.68.85.254 (talk) to last version by 71.189.75.118Next edit → | ||
Line 60: | Line 60: | ||
] | ] | ||
The chain can be divided into three subsections. The first, the ] (also known as the ''Windward isles''), consists of the islands comprising the U.S. state of ]. As it is the closest to the hotspot, this volcanically active region is the youngest part of the chain, with ages ranging from 400,000 years<ref name="Garcia, et. al.-2005">{{cite journal| authors = Michael O. Garcia, Jackie Caplan-Auerbanch, Eric H. De Carlo, M.D. Kurz, N. Becker| title = Geology, geochemistry and earthquake history of Lō{{okina}}ihi Seamount, Hawai{{okina}}i| version = This is the pre-press version of a paper that was published on 2006-05-16 as "Geochemistry, and Earthquake History of Lō{{okina}}ihi Seamount, Hawai{{okina}}i's youngest volcano", in ''Chemie der Erde – Geochemistry'' (66) 2:81–108 | publisher = University of Hawaii – ] | date = September 20, 2005 | url =http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7CW6-4HKD01M-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1103763094&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d9108dc4131193bcb700b18c568a5783| format = PDF | accessdate = March 20, 2009 | doi=10.1016/j.chemer.2005.09.002|bibcode = 2006ChEG...66...81G }} </ref> to 5.1 million years.<ref name=soestform>{{cite web |author=Rubin, Ken|url=http://www.soest.hawaii.edu/GG/HCV/haw_formation.html |title=The Formation of the Hawaiian Islands |accessdate=May 18, 2009 |publisher=Hawaii Center for Vulcanology }}</ref> The island of Hawai{{okina}}i is composed of five volcanoes, of which three (], ], and ]) are still active. ] continues to grow offshore, and is the only known volcano in the chain in the ].<ref name="USGS - Evolution"/> | The chain can be divided into three subsections. The first, the ] (also known as the ''Windward isles''), consists of the islands comprising the U.S. state of ] (not to be confused with the ]). As it is the closest to the hotspot, this volcanically active region is the youngest part of the chain, with ages ranging from 400,000 years<ref name="Garcia, et. al.-2005">{{cite journal| authors = Michael O. Garcia, Jackie Caplan-Auerbanch, Eric H. De Carlo, M.D. Kurz, N. Becker| title = Geology, geochemistry and earthquake history of Lō{{okina}}ihi Seamount, Hawai{{okina}}i| version = This is the pre-press version of a paper that was published on 2006-05-16 as "Geochemistry, and Earthquake History of Lō{{okina}}ihi Seamount, Hawai{{okina}}i's youngest volcano", in ''Chemie der Erde – Geochemistry'' (66) 2:81–108 | publisher = University of Hawaii – ] | date = September 20, 2005 | url =http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7CW6-4HKD01M-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1103763094&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d9108dc4131193bcb700b18c568a5783| format = PDF | accessdate = March 20, 2009 | doi=10.1016/j.chemer.2005.09.002|bibcode = 2006ChEG...66...81G }} </ref> to 5.1 million years.<ref name=soestform>{{cite web |author=Rubin, Ken|url=http://www.soest.hawaii.edu/GG/HCV/haw_formation.html |title=The Formation of the Hawaiian Islands |accessdate=May 18, 2009 |publisher=Hawaii Center for Vulcanology }}</ref> The island of Hawai{{okina}}i is composed of five volcanoes, of which three (], ], and ]) are still active. ] continues to grow offshore, and is the only known volcano in the chain in the ].<ref name="USGS - Evolution"/> | ||
The second part of the chain is composed of the ], collectively referred to as the ''Leeward isles'', the constituents of which are between 7.2 and 27.7 million years in age.<ref name=soestform/> Erosion has long since overtaken volcanic activity at these islands, and most of them are atolls, atoll islands, and extinct islands. They contain many of the most northerly atolls in the world; one of them, ], is ''the'' northern-most atoll in the world.<ref name="KureAttol-KQED">{{cite web |url=http://www.pbs.org/kqed/oceanadventures/episodes/kure/diaries/kure.html |title=Kure Atoll |accessdate=June 13, 2009 |date=March 22, 2006 |publisher=Public Broadcasting System – KQED }}</ref> On June 15, 2006, U.S. President ] issued a proclamation creating ] under the ]. The national monument, meant to protect the biodiversity of the ],<ref group="n">All of the islands in this part of the chain are administrated by ], save for ], which is administrated by the ].</ref> encompasses all of the northern isles, and is one of the largest such protected areas in the world. The proclamation limits tourism to the area, and calls for a phase-out of fishing by 2011.<ref>{{cite web|url=http://news.bbc.co.uk/2/hi/americas/5083974.stm|title=Bush creates new marine sanctuary|author=Staff authors|date=June 15, 2006|publisher=]|accessdate=December 14, 2009}}</ref> | The second part of the chain is composed of the ], collectively referred to as the ''Leeward isles'', the constituents of which are between 7.2 and 27.7 million years in age.<ref name=soestform/> Erosion has long since overtaken volcanic activity at these islands, and most of them are atolls, atoll islands, and extinct islands. They contain many of the most northerly atolls in the world; one of them, ], is ''the'' northern-most atoll in the world.<ref name="KureAttol-KQED">{{cite web |url=http://www.pbs.org/kqed/oceanadventures/episodes/kure/diaries/kure.html |title=Kure Atoll |accessdate=June 13, 2009 |date=March 22, 2006 |publisher=Public Broadcasting System – KQED }}</ref> On June 15, 2006, U.S. President ] issued a proclamation creating ] under the ]. The national monument, meant to protect the biodiversity of the ],<ref group="n">All of the islands in this part of the chain are administrated by ], save for ], which is administrated by the ].</ref> encompasses all of the northern isles, and is one of the largest such protected areas in the world. The proclamation limits tourism to the area, and calls for a phase-out of fishing by 2011.<ref>{{cite web|url=http://news.bbc.co.uk/2/hi/americas/5083974.stm|title=Bush creates new marine sanctuary|author=Staff authors|date=June 15, 2006|publisher=]|accessdate=December 14, 2009}}</ref> |
Revision as of 19:45, 10 October 2014
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Hawaiian–Emperor seamount chain" – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when to remove this message) |
Hawaiian-Emperor seamount chain | |
---|---|
Hawaiian Islands | |
Mauna Kea, the range's highest point | |
Highest point | |
Peak | Mauna Kea, Hawaii, United States |
Elevation | 4,207 m (13,802 ft) |
Dimensions | |
Length | 5,800 km (3,600 mi) NE-SW |
Geography | |
Lua error in Module:Location_map at line 526: Unable to find the specified location map definition: "Module:Location map/data/Hawaii hotspot.jpg" does not exist. | |
Country | United States |
State | Hawaii |
Geology | |
Orogeny | Hawaii hotspot |
The Hawaiian–Emperor seamount chain is a mostly undersea mountain range in the Pacific that reaches above sea level in Hawaii. It is composed of the Hawaiian ridge, consisting of the islands of the Hawaiian chain northwest to Kure Atoll, and the Emperor Seamounts: together they form a vast underwater mountain region of islands and intervening seamounts, atolls, shallows, banks and reefs along a line trending southeast to northwest beneath the northern Pacific Ocean. The seamount chain, containing over 80 identified undersea volcanoes, stretches over 5,800 kilometres (3,600 mi) from the Aleutian Trench in the far northwest Pacific to the Loʻihi seamount, the youngest volcano in the chain, which lies about 35 kilometres (22 mi) southeast of the Island of Hawaiʻi.
Regions
The chain can be divided into three subsections. The first, the Hawaiian archipelago (also known as the Windward isles), consists of the islands comprising the U.S. state of Hawaiʻi (not to be confused with the island of Hawaiʻi). As it is the closest to the hotspot, this volcanically active region is the youngest part of the chain, with ages ranging from 400,000 years to 5.1 million years. The island of Hawaiʻi is composed of five volcanoes, of which three (Kilauea, Mauna Loa, and Hualalai) are still active. Lōʻihi Seamount continues to grow offshore, and is the only known volcano in the chain in the submarine pre-shield stage.
The second part of the chain is composed of the Northwestern Hawaiian Islands, collectively referred to as the Leeward isles, the constituents of which are between 7.2 and 27.7 million years in age. Erosion has long since overtaken volcanic activity at these islands, and most of them are atolls, atoll islands, and extinct islands. They contain many of the most northerly atolls in the world; one of them, Kure Atoll, is the northern-most atoll in the world. On June 15, 2006, U.S. President George W. Bush issued a proclamation creating Papahānaumokuākea Marine National Monument under the Antiquities Act of 1906. The national monument, meant to protect the biodiversity of the Hawaiian isles, encompasses all of the northern isles, and is one of the largest such protected areas in the world. The proclamation limits tourism to the area, and calls for a phase-out of fishing by 2011.
The oldest and most heavily eroded part of the chain are the Emperor seamounts, which are 39 to 85 million years in age. The Emperor and Hawaiian chains form an angle of about 120°. This bend was long attributed to a relatively sudden change of 60° in the direction of plate motion, but research conducted in 2003 suggests that it was the movement of the hotspot itself that caused the bend. The issue is still currently under debate. All of the volcanoes in this part of the chain have long since subsided below sea level, becoming seamounts and guyots (see also the seamount and guyot stages of Hawaiian volcanism). Many of the volcanoes are named after former emperors of Japan. The seamount chain extends to the West Pacific, and terminates at the Kuril–Kamchatka Trench, a subduction zone at the border of Russia.
Formation
Main article: Evolution of Hawaiian volcanoesThe oldest age for the Emperor Seamounts is 81 million years, and comes from Detroit Seamount. However, Meiji Guyot, located to the north of Detroit Seamount, is likely somewhat older.
In 1963, geologist John Tuzo Wilson hypothesized the origins of the Hawaiian–Emperor seamount chain, explaining that they were created by a hotspot of volcanic activity that was essentially stationary as the Pacific tectonic plate drifted in a northwesterly direction, leaving a trail of increasingly eroded volcanic islands and seamounts in its wake. An otherwise inexplicable kink in the chain marks a shift in the movement of the Pacific plate some 47 million years ago, from a northward to a more northwesterly direction, and the kink has been presented in geology texts as an example of how a tectonic plate can shift direction comparatively suddenly. A look at the USGS map on the origin of the Hawaiian Islands clearly shows this "spearpoint".
In a more recent study, Sharp and Clague (2006) interpret the bend as starting at about 50 million years ago. They also conclude that the bend formed from a "traditional" cause—a change in the direction of motion of the Pacific plate.
However, recent research shows that the hotspot itself may have moved with time. Some evidence comes from analysis of the orientation of the ancient magnetic field preserved by magnetite in ancient lava flows sampled at four seamounts (Tarduno et al., 2003): this evidence from paleomagnetism shows a more complex history than the commonly accepted view of a stationary hotspot. If the hotspot had remained above a fixed mantle plume during the past 80 million years, the latitude as recorded by the orientation of the ancient magnetic field preserved by magnetite (paleolatitude) should be constant for each sample; this should also signify original cooling at the same latitude as the current location of the Hawaiian hotspot. Instead of remaining constant, the paleolatitudes of the Emperor Seamounts show a change from north to south, with decreasing age. The paleomagnetic data from the seamounts of the Emperor chain suggest motion of the Hawaiian hotspot in Earth's mantle. Tarduno et al. (2009) have summarized evidence that the bend in the seamount chain may be caused by circulation patterns in the flowing solid mantle (mantle "wind") rather than a change in plate motion.
Aging
The chain has been produced by the movement of the ocean crust over the Hawaiʻi hotspot, an upwelling of hot rock from the Earth's mantle. As the oceanic crust moves the volcanoes farther away from their source of magma, their eruptions become less frequent and less powerful until they eventually cease to erupt altogether. At that point erosion of the volcano and subsidence of the seafloor cause the volcano to gradually diminish. As the volcano sinks and erodes, it first becomes an atoll island and then an atoll. Further subsidence causes the volcano to sink below the sea surface, becoming a seamount and/or a guyot.
See also
- List of volcanoes in the Hawaiian – Emperor seamount chain
- Detroit Seamount
- Evolution of Hawaiian volcanoes
- Isostasy
- Kodiak-Bowie Seamount chain
- Meiji Seamount
- New England Seamount chain
- Oceanic trench
- Pacific-Kula Ridge
- Plate tectonics
Notes
- All of the islands in this part of the chain are administrated by Hawaii state, save for Midway Atoll, which is administrated by the U.S. Fish and Wildlife Service.
References
- "Geology, geochemistry and earthquake history of Lōʻihi Seamount, Hawaiʻi" (PDF). This is the pre-press version of a paper that was published on 2006-05-16 as "Geochemistry, and Earthquake History of Lōʻihi Seamount, Hawaiʻi's youngest volcano", in Chemie der Erde – Geochemistry (66) 2:81–108. University of Hawaii – School of Ocean and Earth Science and Technology. September 20, 2005. Bibcode:2006ChEG...66...81G. doi:10.1016/j.chemer.2005.09.002. Retrieved March 20, 2009.
{{cite journal}}
: Cite journal requires|journal=
(help); Unknown parameter|authors=
ignored (help) Pre-press version - ^ Rubin, Ken. "The Formation of the Hawaiian Islands". Hawaii Center for Vulcanology. Retrieved May 18, 2009.
- ^ "Evolution of Hawaiian Volcanoes". Hawaiian Volcano Observatory (USGS). September 8, 1995. Retrieved March 7, 2009.
- "Kure Atoll". Public Broadcasting System – KQED. March 22, 2006. Retrieved June 13, 2009.
- Staff authors (June 15, 2006). "Bush creates new marine sanctuary". BBC News. Retrieved December 14, 2009.
- Sharp, W. D.; Clague, DA (2006). "50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion". Science. 313 (5791): 1281–84. Bibcode:2006Sci...313.1281S. doi:10.1126/science.1128489. PMID 16946069.
- Regelous, M.; Hofmann, A.W.; Abouchami, W.; Galer, S.J.G. (2003). "Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma" (PDF). Journal of Petrology. 44 (1): 113–140. doi:10.1093/petrology/44.1.113. Retrieved July 23, 2010.
- John Roach (August 14, 2003). "Hot Spot That Spawned Hawaii Was on the Move, Study Finds". National Geographic News. Retrieved March 9, 2009.
- Sharp et al., 2006, Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion.
- G. R. Foulger; Don L. Anderson. "The Emperor and Hawaiian Volcanic Chains: How well do they fit the plume hypothesis?". MantlePlumes.org. Retrieved April 1, 2009.
- "origin of the Hawaiian Islands". Pubs.usgs.gov. 2013-01-04. Retrieved 2013-01-12.
Further reading
- Tarduno, John A.; et al. (2003). "The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth's Mantle". Science. 301 (5636): 1064–1069. Bibcode:2003Sci...301.1064T. doi:10.1126/science.1086442. PMID 12881572.
{{cite journal}}
: Explicit use of et al. in:|author2=
(help) - Tarduno, John A.; et al. (2009). "The Bent Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind". Science. 324: 50–53. Bibcode:2009Sci...324...50T. doi:10.1126/science.1161256.
{{cite journal}}
: Explicit use of et al. in:|author2=
(help) - Sharp, Warren D.; Clague, David A. (2006). "50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate motion". Science. 313 (5791): 1281–1284. Bibcode:2006Sci...313.1281S. doi:10.1126/science.1128489. PMID 16946069.
- Wilson, J. Tuzo (1963). "A possible origin of the Hawaiian Islands" (PDF). Canadian Journal of Physics. 41: 863–870. Bibcode:1963CaJPh..41..863W. doi:10.1139/p63-094.
- Ken Rubin, "The Formation of the Hawaiian Islands"
- USGS, "The long trail of the Hawaiian hotspot"
- National Geographic News: John Roach, "Hot Spot That Spawned Hawaii Was on the Move, Study Finds": August 14, 2003
- Evolution of Hawaiian Volcanoes from the USGS.
- The Formation of the Hawaiian Islands with tables and diagrams illustrating the progressive age of the volcanoes.
- Hot Spots and Mantle Plumes